பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
வேடிக்கை விளையாட்டு + திறன்களை மேம்படுத்துதல் = கெலிப்பு!
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=-8 ab=1\times 7=7
குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை x^{2}+ax+bx+7-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
a=-7 b=-1
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் எதிர்மறையாக இருக்கும். அத்தகைய ஜோடியானது அமைப்புத் தீர்வு மட்டுமே.
\left(x^{2}-7x\right)+\left(-x+7\right)
x^{2}-8x+7 என்பதை \left(x^{2}-7x\right)+\left(-x+7\right) என மீண்டும் எழுதவும்.
x\left(x-7\right)-\left(x-7\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் -1-ஐக் காரணிப்படுத்தவும்.
\left(x-7\right)\left(x-1\right)
பரவல் பண்பைப் பயன்படுத்தி x-7 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x^{2}-8x+7=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
-8-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
7-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
-28-க்கு 64-ஐக் கூட்டவும்.
x=\frac{-\left(-8\right)±6}{2}
36-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{8±6}{2}
-8-க்கு எதிரில் இருப்பது 8.
x=\frac{14}{2}
இப்போது ± நேர்மறையாக உள்ளபோது x=\frac{8±6}{2} சமன்பாட்டைத் தீர்க்கவும். 6-க்கு 8-ஐக் கூட்டவும்.
x=7
14-ஐ 2-ஆல் வகுக்கவும்.
x=\frac{2}{2}
இப்போது ± எதிர்மறையாக உள்ளபோது x=\frac{8±6}{2} சமன்பாட்டைத் தீர்க்கவும். 8–இலிருந்து 6–ஐக் கழிக்கவும்.
x=1
2-ஐ 2-ஆல் வகுக்கவும்.
x^{2}-8x+7=\left(x-7\right)\left(x-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 7-ஐயும், x_{2}-க்கு 1-ஐயும் பதிலீடு செய்யவும்.