பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image
x குறித்து வகையிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\frac{3x^{3}}{x\left(x+1\right)}
ஏற்கனவே காரணிபடுத்தாத கோவைகளை காரணிப்படுத்தவும்.
\frac{3x^{2}}{x+1}
பகுதி மற்றும் தொகுதி இரண்டிலும் x-ஐ ரத்துசெய்யவும்.
\frac{\left(x^{2}+x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{3})-3x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1})}{\left(x^{2}+x^{1}\right)^{2}}
ஏதேனும் இரண்டு வகையிடக்கூடிய சார்புகளுக்கு, இரண்டு சார்புகளின் ஈவின் வகைக்கெழு என்பது தொகுதியின் வகைக்கெழுவை பகுதியால் பெருக்க வரும் மதிப்பிலிருந்து பகுதியின் வகைக்கெழுவை தொகுதியால் பெருக்க வரும் மதிப்பைக் கழித்து, எல்லாமே பகுதியின் வர்க்கத்தால் வகுக்கப்படும்.
\frac{\left(x^{2}+x^{1}\right)\times 3\times 3x^{3-1}-3x^{3}\left(2x^{2-1}+x^{1-1}\right)}{\left(x^{2}+x^{1}\right)^{2}}
பல்லுறுப்புக்கோவையின் வகைக்கெழு என்பது அதன் உருப்புகளின் வகைக்கெழுவின் கூட்டுத்தொகை ஆகும். மாறிலியின் வகைக்கெழு 0 ஆகும். ax^{n}-இன் வகைக்கெழு nax^{n-1} ஆகும்.
\frac{\left(x^{2}+x^{1}\right)\times 9x^{2}-3x^{3}\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
எளிமையாக்கவும்.
\frac{x^{2}\times 9x^{2}+x^{1}\times 9x^{2}-3x^{3}\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
9x^{2}-ஐ x^{2}+x^{1} முறை பெருக்கவும்.
\frac{x^{2}\times 9x^{2}+x^{1}\times 9x^{2}-\left(3x^{3}\times 2x^{1}+3x^{3}x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
2x^{1}+x^{0}-ஐ 3x^{3} முறை பெருக்கவும்.
\frac{9x^{2+2}+9x^{1+2}-\left(3\times 2x^{3+1}+3x^{3}\right)}{\left(x^{2}+x^{1}\right)^{2}}
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும்.
\frac{9x^{4}+9x^{3}-\left(6x^{4}+3x^{3}\right)}{\left(x^{2}+x^{1}\right)^{2}}
எளிமையாக்கவும்.
\frac{3x^{4}+6x^{3}}{\left(x^{2}+x^{1}\right)^{2}}
ஒரேமாதிரியான உறுப்புகளை இணைக்கவும்.
\frac{3x^{4}+6x^{3}}{\left(x^{2}+x\right)^{2}}
t, t^{1}=t எந்தவொரு சொல்லுக்கும்.