பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x குறித்து வகையிடவும்
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\frac{\left(2x^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2})-\left(-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+1)\right)}{\left(2x^{2}+1\right)^{2}}
ஏதேனும் இரண்டு வகையிடக்கூடிய சார்புகளுக்கு, இரண்டு சார்புகளின் ஈவின் வகைக்கெழு என்பது தொகுதியின் வகைக்கெழுவை பகுதியால் பெருக்க வரும் மதிப்பிலிருந்து பகுதியின் வகைக்கெழுவை தொகுதியால் பெருக்க வரும் மதிப்பைக் கழித்து, எல்லாமே பகுதியின் வர்க்கத்தால் வகுக்கப்படும்.
\frac{\left(2x^{2}+1\right)\times 2\left(-1\right)x^{2-1}-\left(-x^{2}\times 2\times 2x^{2-1}\right)}{\left(2x^{2}+1\right)^{2}}
பல்லுறுப்புக்கோவையின் வகைக்கெழு என்பது அதன் உருப்புகளின் வகைக்கெழுவின் கூட்டுத்தொகை ஆகும். மாறிலியின் வகைக்கெழு 0 ஆகும். ax^{n}-இன் வகைக்கெழு nax^{n-1} ஆகும்.
\frac{\left(2x^{2}+1\right)\left(-2\right)x^{1}-\left(-x^{2}\times 4x^{1}\right)}{\left(2x^{2}+1\right)^{2}}
எண்கணிதத்தைச் செய்யவும்.
\frac{2x^{2}\left(-2\right)x^{1}-2x^{1}-\left(-x^{2}\times 4x^{1}\right)}{\left(2x^{2}+1\right)^{2}}
பங்கீட்டுக் குணத்தைப் பயன்படுத்தி விரிக்கவும்.
\frac{2\left(-2\right)x^{2+1}-2x^{1}-\left(-4x^{2+1}\right)}{\left(2x^{2}+1\right)^{2}}
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும்.
\frac{-4x^{3}-2x^{1}-\left(-4x^{3}\right)}{\left(2x^{2}+1\right)^{2}}
எண்கணிதத்தைச் செய்யவும்.
\frac{\left(-4-\left(-4\right)\right)x^{3}-2x^{1}}{\left(2x^{2}+1\right)^{2}}
ஒரேமாதிரியான உறுப்புகளை இணைக்கவும்.
\frac{-2x^{1}}{\left(2x^{2}+1\right)^{2}}
-4–இலிருந்து -4–ஐக் கழிக்கவும்.
\frac{-2x}{\left(2x^{2}+1\right)^{2}}
t, t^{1}=t எந்தவொரு சொல்லுக்கும்.