f-க்காகத் தீர்க்கவும்
f=-\frac{x}{-2x^{2}+5x-1}
x\neq 0\text{ and }x\neq \frac{\sqrt{17}+5}{4}\text{ and }x\neq \frac{5-\sqrt{17}}{4}
x-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
x=-\frac{\sqrt{17f^{2}+10f+1}-5f-1}{4f}
x=\frac{\sqrt{17f^{2}+10f+1}+5f+1}{4f}\text{, }f\neq 0
x-க்காகத் தீர்க்கவும்
x=-\frac{\sqrt{17f^{2}+10f+1}-5f-1}{4f}
x=\frac{\sqrt{17f^{2}+10f+1}+5f+1}{4f}\text{, }f\leq \frac{-2\sqrt{2}-5}{17}\text{ or }\left(f\neq 0\text{ and }f\geq \frac{2\sqrt{2}-5}{17}\right)
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\frac{1}{f}x=2x^{2}-5x+1
உறுப்புகளை மீண்டும் வரிசைப்படுத்தவும்.
1x=2x^{2}f-5xf+f
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி f ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் f-ஆல் பெருக்கவும்.
2x^{2}f-5xf+f=1x
எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
2fx^{2}-5fx+f=x
உறுப்புகளை மீண்டும் வரிசைப்படுத்தவும்.
\left(2x^{2}-5x+1\right)f=x
f உள்ள எல்லா உறுப்புகளையும் இணைக்கவும்.
\frac{\left(2x^{2}-5x+1\right)f}{2x^{2}-5x+1}=\frac{x}{2x^{2}-5x+1}
இரு பக்கங்களையும் 2x^{2}-5x+1-ஆல் வகுக்கவும்.
f=\frac{x}{2x^{2}-5x+1}
2x^{2}-5x+1-ஆல் வகுத்தல் 2x^{2}-5x+1-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
f=\frac{x}{2x^{2}-5x+1}\text{, }f\neq 0
மாறி f ஆனது 0-க்குச் சமமாக இருக்க முடியாது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}