பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
வினாடி வினா
Polynomial

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a^{2}+3a-35=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
a=\frac{-3±\sqrt{3^{2}-4\left(-35\right)}}{2}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
a=\frac{-3±\sqrt{9-4\left(-35\right)}}{2}
3-ஐ வர்க்கமாக்கவும்.
a=\frac{-3±\sqrt{9+140}}{2}
-35-ஐ -4 முறை பெருக்கவும்.
a=\frac{-3±\sqrt{149}}{2}
140-க்கு 9-ஐக் கூட்டவும்.
a=\frac{\sqrt{149}-3}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு a=\frac{-3±\sqrt{149}}{2}-ஐத் தீர்க்கவும். \sqrt{149}-க்கு -3-ஐக் கூட்டவும்.
a=\frac{-\sqrt{149}-3}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு a=\frac{-3±\sqrt{149}}{2}-ஐத் தீர்க்கவும். -3–இலிருந்து \sqrt{149}–ஐக் கழிக்கவும்.
a^{2}+3a-35=\left(a-\frac{\sqrt{149}-3}{2}\right)\left(a-\frac{-\sqrt{149}-3}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு \frac{-3+\sqrt{149}}{2}-ஐயும், x_{2}-க்கு \frac{-3-\sqrt{149}}{2}-ஐயும் பதிலீடு செய்யவும்.