காரணி
M\left(3M+5\right)
மதிப்பிடவும்
M\left(3M+5\right)
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
M\left(3M+5\right)
M-ஐக் காரணிப்படுத்தவும்.
3M^{2}+5M=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
M=\frac{-5±\sqrt{5^{2}}}{2\times 3}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
M=\frac{-5±5}{2\times 3}
5^{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
M=\frac{-5±5}{6}
3-ஐ 2 முறை பெருக்கவும்.
M=\frac{0}{6}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு M=\frac{-5±5}{6}-ஐத் தீர்க்கவும். 5-க்கு -5-ஐக் கூட்டவும்.
M=0
0-ஐ 6-ஆல் வகுக்கவும்.
M=-\frac{10}{6}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு M=\frac{-5±5}{6}-ஐத் தீர்க்கவும். -5–இலிருந்து 5–ஐக் கழிக்கவும்.
M=-\frac{5}{3}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-10}{6}-ஐ குறைந்த படிக்கு குறைக்கவும்.
3M^{2}+5M=3M\left(M-\left(-\frac{5}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 0-ஐயும், x_{2}-க்கு -\frac{5}{3}-ஐயும் பதிலீடு செய்யவும்.
3M^{2}+5M=3M\left(M+\frac{5}{3}\right)
படிவம் p-\left(-q\right)-இன் கோவைகள் அனைத்தையும் p+q-க்கு எளிமையாக்கவும்.
3M^{2}+5M=3M\times \frac{3M+5}{3}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், M உடன் \frac{5}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
3M^{2}+5M=M\left(3M+5\right)
3 மற்றும் 3-இல் சிறந்த பொதுக் காரணி 3-ஐ ரத்துசெய்கிறது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}