P-க்காகத் தீர்க்கவும்
P\neq 0
x = \frac{\sqrt[3]{6 \sqrt{80229} + 1765} + \sqrt[3]{1765 - 6 \sqrt{80229}} + 7}{12} = 2.1802301552804595
x-க்காகத் தீர்க்கவும்
x = \frac{\sqrt[3]{6 \sqrt{80229} + 1765} + \sqrt[3]{1765 - 6 \sqrt{80229}} + 7}{12} = 2.1802301552804595
P\neq 0
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{2+x}{2-x}+\frac{4x^{2}}{x^{2}-4}-\frac{2-x}{2+x}\right)
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி P ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் P-ஆல் பெருக்கவும்.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{2+x}{2-x}+\frac{4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
காரணி x^{2}-4.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{\left(2+x\right)\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். 2-x மற்றும் \left(x-2\right)\left(x+2\right)-க்கு இடையிலான மீச்சிறு பெருக்கி \left(x-2\right)\left(x+2\right) ஆகும். \frac{-\left(x+2\right)}{-\left(x+2\right)}-ஐ \frac{2+x}{2-x} முறை பெருக்கவும்.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{\left(2+x\right)\left(-1\right)\left(x+2\right)+4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
\frac{\left(2+x\right)\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} மற்றும் \frac{4x^{2}}{\left(x-2\right)\left(x+2\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{-2x-4-x^{2}-2x+4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
\left(2+x\right)\left(-1\right)\left(x+2\right)+4x^{2} இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{-4x-4+3x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
-2x-4-x^{2}-2x+4x^{2}-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{\left(x-2\right)\left(3x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
\frac{-4x-4+3x^{2}}{\left(x-2\right)\left(x+2\right)}-இல் ஏற்கனவே காரணிப்படுத்தாத கோவைகளை காரணிப்படுத்தவும்.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{3x+2}{x+2}-\frac{2-x}{2+x}\right)
பகுதி மற்றும் தொகுதி இரண்டிலும் x-2-ஐ ரத்துசெய்யவும்.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\times \frac{3x+2-\left(2-x\right)}{x+2}
\frac{3x+2}{x+2} மற்றும் \frac{2-x}{2+x} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\times \frac{3x+2-2+x}{x+2}
3x+2-\left(2-x\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\times \frac{4x}{x+2}
3x+2-2+x-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
P=\frac{P\times 4x}{x+2}x\left(-3+x\right)^{-1}\left(2-x\right)
P\times \frac{4x}{x+2}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
P=2\times \frac{P\times 4x}{x+2}x\left(-3+x\right)^{-1}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
\frac{P\times 4x}{x+2}x\left(-3+x\right)^{-1}-ஐ 2-x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
P=\frac{2P\times 4x}{x+2}x\left(-3+x\right)^{-1}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
2\times \frac{P\times 4x}{x+2}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
P=\frac{2P\times 4xx}{x+2}\left(-3+x\right)^{-1}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
\frac{2P\times 4x}{x+2}x-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
\frac{2P\times 4xx}{x+2}\left(-3+x\right)^{-1}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2}-\frac{4Px\left(-3+x\right)^{-1}}{x+2}x^{2}
\frac{4Px}{x+2}\left(-3+x\right)^{-1}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2}-\frac{4Px\left(-3+x\right)^{-1}x^{2}}{x+2}
\frac{4Px\left(-3+x\right)^{-1}}{x+2}x^{2}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}-4Px\left(-3+x\right)^{-1}x^{2}}{x+2}
\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2} மற்றும் \frac{4Px\left(-3+x\right)^{-1}x^{2}}{x+2} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
P=\frac{2P\times 4x^{2}\left(-3+x\right)^{-1}-4Px\left(-3+x\right)^{-1}x^{2}}{x+2}
x மற்றும் x-ஐப் பெருக்கவும், தீர்வு x^{2}.
P=\frac{2P\times 4x^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2}
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும். 3-ஐப் பெற, 1 மற்றும் 2-ஐக் கூட்டவும்.
P=\frac{8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2}
2 மற்றும் 4-ஐப் பெருக்கவும், தீர்வு 8.
P-\frac{8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2}=0
இரு பக்கங்களில் இருந்தும் \frac{8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2}-ஐக் கழிக்கவும்.
\left(x+2\right)P-\left(8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}\right)=0
சமன்பாட்டின் இரு பக்கங்களையும் x+2-ஆல் பெருக்கவும்.
-\left(-4\times \frac{1}{x-3}Px^{3}+8\times \frac{1}{x-3}Px^{2}\right)+P\left(x+2\right)=0
உறுப்புகளை மீண்டும் வரிசைப்படுத்தவும்.
-\left(-4\times \frac{1}{x-3}Px^{3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
சமன்பாட்டின் இரு பக்கங்களையும் x-3-ஆல் பெருக்கவும்.
-\left(\frac{-4}{x-3}Px^{3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
-4\times \frac{1}{x-3}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
-\left(\frac{-4P}{x-3}x^{3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{-4}{x-3}P-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
-\left(\frac{-4Px^{3}}{x-3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{-4P}{x-3}x^{3}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
-\left(\frac{-4Px^{3}}{x-3}+\frac{8}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
8\times \frac{1}{x-3}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
-\left(\frac{-4Px^{3}}{x-3}+\frac{8P}{x-3}x^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{8}{x-3}P-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
-\left(\frac{-4Px^{3}}{x-3}+\frac{8Px^{2}}{x-3}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{8P}{x-3}x^{2}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
-\frac{-4Px^{3}+8Px^{2}}{x-3}\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{-4Px^{3}}{x-3} மற்றும் \frac{8Px^{2}}{x-3} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
-\frac{\left(-4Px^{3}+8Px^{2}\right)\left(x-3\right)}{x-3}+P\left(x+2\right)\left(x-3\right)=0
\frac{-4Px^{3}+8Px^{2}}{x-3}\left(x-3\right)-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
-\left(-4Px^{3}+8Px^{2}\right)+P\left(x+2\right)\left(x-3\right)=0
பகுதி மற்றும் தொகுதி இரண்டிலும் x-3-ஐ ரத்துசெய்யவும்.
4Px^{3}-8Px^{2}+P\left(x+2\right)\left(x-3\right)=0
-4Px^{3}+8Px^{2}-இன் எதிர்ச்சொல்லைக் கண்டறிய, ஒவ்வொரு வார்த்தையின் எதிர்ச்சொல்லையும் கண்டறியவும்.
4Px^{3}-8Px^{2}+\left(Px+2P\right)\left(x-3\right)=0
P-ஐ x+2-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
4Px^{3}-8Px^{2}+Px^{2}-Px-6P=0
Px+2P-ஐ x-3-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
4Px^{3}-7Px^{2}-Px-6P=0
-8Px^{2} மற்றும் Px^{2}-ஐ இணைத்தால், தீர்வு -7Px^{2}.
\left(4x^{3}-7x^{2}-x-6\right)P=0
P உள்ள எல்லா உறுப்புகளையும் இணைக்கவும்.
P=0
0-ஐ -x-7x^{2}-6+4x^{3}-ஆல் வகுக்கவும்.
P\in \emptyset
மாறி P ஆனது 0-க்குச் சமமாக இருக்க முடியாது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}