பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
E-க்காகத் தீர்க்கவும்
Tick mark Image
E-ஐ ஒதுக்கீடு செய்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

E=\frac{-\frac{3}{2}}{\frac{8}{12}-\frac{5}{4}}
எதிர்மறைக் குறியீட்டை பிரித்தெடுப்பதன் மூலம் பின்னம் \frac{-3}{2}-ஐ -\frac{3}{2}-ஆக மீண்டும் எழுதலாம்.
E=\frac{-\frac{3}{2}}{\frac{2}{3}-\frac{5}{4}}
4-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{8}{12}-ஐ குறைந்த படிக்கு குறைக்கவும்.
E=\frac{-\frac{3}{2}}{\frac{8}{12}-\frac{15}{12}}
3 மற்றும் 4-க்கு இடையிலான குறைந்தபட்ச பெருக்கல் எண் 12 ஆகும். \frac{2}{3} மற்றும் \frac{5}{4} ஆகியவற்றை 12 என்ற வகுத்தியால் பின்னமாக்கவும்.
E=\frac{-\frac{3}{2}}{\frac{8-15}{12}}
\frac{8}{12} மற்றும் \frac{15}{12} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
E=\frac{-\frac{3}{2}}{-\frac{7}{12}}
8-இலிருந்து 15-ஐக் கழிக்கவும், தீர்வு -7.
E=-\frac{3}{2}\left(-\frac{12}{7}\right)
-\frac{3}{2}-இன் தலைகீழ் மதிப்பால் -\frac{7}{12}-ஐப் பெருக்குவதன் மூலம் -\frac{3}{2}-ஐ -\frac{7}{12}-ஆல் வகுக்கவும்.
E=\frac{-3\left(-12\right)}{2\times 7}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{12}{7}-ஐ -\frac{3}{2} முறை பெருக்கவும்.
E=\frac{36}{14}
\frac{-3\left(-12\right)}{2\times 7} என்ற பின்னத்தில் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
E=\frac{18}{7}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{36}{14}-ஐ குறைந்த படிக்கு குறைக்கவும்.