பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=-30 ab=9\times 25=225
குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை 9x^{2}+ax+bx+25-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் எதிர்மறையாக இருக்கும். 225 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-15 b=-15
-30 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(9x^{2}-15x\right)+\left(-15x+25\right)
9x^{2}-30x+25 என்பதை \left(9x^{2}-15x\right)+\left(-15x+25\right) என மீண்டும் எழுதவும்.
3x\left(3x-5\right)-5\left(3x-5\right)
முதல் குழுவில் 3x மற்றும் இரண்டாவது குழுவில் -5-ஐக் காரணிப்படுத்தவும்.
\left(3x-5\right)\left(3x-5\right)
பரவல் பண்பைப் பயன்படுத்தி 3x-5 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
\left(3x-5\right)^{2}
ஈருறுப்பு வர்க்கமாக மீண்டும் எழுதவும்.
factor(9x^{2}-30x+25)
இந்த மூவுறுப்பு மதிப்பில் ஒரு மூவுறுப்பு வர்க்கத்தின் வடிவம் உள்ளது, அநேகமாக பொதுவான காரணியால் பெருக்கப்பட்டது. மூவுறுப்பு வர்க்கங்களை முன்னிலை மற்றும் பின்னிலையிலுள்ள உறுப்புகளின் வர்க்க மூலங்களைக் கண்டுபிடிப்பதன் மூலம் காரணிப்படுத்தலாம்.
gcf(9,-30,25)=1
குணகங்களின் மிகப்பெரிய பொதுவான காரணியைக் கண்டுபிடிக்கவும்.
\sqrt{9x^{2}}=3x
முன்னணி உறுப்பு 9x^{2}-இன் வர்க்க மூலத்தைக் கண்டுபிடிக்கவும்.
\sqrt{25}=5
பின்னிலை உறுப்பு 25-இன் வர்க்க மூலத்தைக் கண்டுபிடிக்கவும்.
\left(3x-5\right)^{2}
மூவுறுப்பு வர்க்கம் என்பது ஈருறுப்பின் வர்க்கமாகும், அதாவது மூவுறுப்பு வர்க்கத்தின் நடு உறுப்பின் குறியால் தீர்மானிக்கப்படும் குறியுள்ள, முன்னிலை மற்றும் பின்னிலையிலிருக்கும் உறுப்புகளின் வர்க்க மூலத்தின் கூட்டுத்தொகை அல்லது வித்தியாசம்.
9x^{2}-30x+25=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 9\times 25}}{2\times 9}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 9\times 25}}{2\times 9}
-30-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-30\right)±\sqrt{900-36\times 25}}{2\times 9}
9-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-30\right)±\sqrt{900-900}}{2\times 9}
25-ஐ -36 முறை பெருக்கவும்.
x=\frac{-\left(-30\right)±\sqrt{0}}{2\times 9}
-900-க்கு 900-ஐக் கூட்டவும்.
x=\frac{-\left(-30\right)±0}{2\times 9}
0-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{30±0}{2\times 9}
-30-க்கு எதிரில் இருப்பது 30.
x=\frac{30±0}{18}
9-ஐ 2 முறை பெருக்கவும்.
9x^{2}-30x+25=9\left(x-\frac{5}{3}\right)\left(x-\frac{5}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு \frac{5}{3}-ஐயும், x_{2}-க்கு \frac{5}{3}-ஐயும் பதிலீடு செய்யவும்.
9x^{2}-30x+25=9\times \frac{3x-5}{3}\left(x-\frac{5}{3}\right)
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கழிப்பதன் மூலம், x-இலிருந்து \frac{5}{3}-ஐக் கழிக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
9x^{2}-30x+25=9\times \frac{3x-5}{3}\times \frac{3x-5}{3}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கழிப்பதன் மூலம், x-இலிருந்து \frac{5}{3}-ஐக் கழிக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
9x^{2}-30x+25=9\times \frac{\left(3x-5\right)\left(3x-5\right)}{3\times 3}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{3x-5}{3}-ஐ \frac{3x-5}{3} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
9x^{2}-30x+25=9\times \frac{\left(3x-5\right)\left(3x-5\right)}{9}
3-ஐ 3 முறை பெருக்கவும்.
9x^{2}-30x+25=\left(3x-5\right)\left(3x-5\right)
9 மற்றும் 9-இல் சிறந்த பொதுக் காரணி 9-ஐ ரத்துசெய்கிறது.