பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்
வினாடி வினா
Polynomial

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

9x^{2}+6x+10-9=0
இரு பக்கங்களில் இருந்தும் 9-ஐக் கழிக்கவும்.
9x^{2}+6x+1=0
10-இலிருந்து 9-ஐக் கழிக்கவும், தீர்வு 1.
a+b=6 ab=9\times 1=9
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை 9x^{2}+ax+bx+1-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,9 3,3
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் நேர்மறையாக இருக்கும். 9 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1+9=10 3+3=6
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=3 b=3
6 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(9x^{2}+3x\right)+\left(3x+1\right)
9x^{2}+6x+1 என்பதை \left(9x^{2}+3x\right)+\left(3x+1\right) என மீண்டும் எழுதவும்.
3x\left(3x+1\right)+3x+1
9x^{2}+3x-இல் 3x ஐக் காரணிப்படுத்தவும்.
\left(3x+1\right)\left(3x+1\right)
பரவல் பண்பைப் பயன்படுத்தி 3x+1 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
\left(3x+1\right)^{2}
ஈருறுப்பு வர்க்கமாக மீண்டும் எழுதவும்.
x=-\frac{1}{3}
சமன்பாட்டுத் தீர்வைக் கண்டறிய, 3x+1=0-ஐத் தீர்க்கவும்.
9x^{2}+6x+10=9
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
9x^{2}+6x+10-9=9-9
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 9-ஐக் கழிக்கவும்.
9x^{2}+6x+10-9=0
9-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
9x^{2}+6x+1=0
10–இலிருந்து 9–ஐக் கழிக்கவும்.
x=\frac{-6±\sqrt{6^{2}-4\times 9}}{2\times 9}
இந்தச் சமன்பாடு வழக்கமான வடிவத்தில் உள்ளது: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} என்ற இருபடி சூத்திரத்தில் a-க்குப் பதிலாக 9, b-க்குப் பதிலாக 6 மற்றும் c-க்கு பதிலாக 1-ஐ பதலீடு செய்யவும்.
x=\frac{-6±\sqrt{36-4\times 9}}{2\times 9}
6-ஐ வர்க்கமாக்கவும்.
x=\frac{-6±\sqrt{36-36}}{2\times 9}
9-ஐ -4 முறை பெருக்கவும்.
x=\frac{-6±\sqrt{0}}{2\times 9}
-36-க்கு 36-ஐக் கூட்டவும்.
x=-\frac{6}{2\times 9}
0-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=-\frac{6}{18}
9-ஐ 2 முறை பெருக்கவும்.
x=-\frac{1}{3}
6-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-6}{18}-ஐ குறைந்த படிக்கு குறைக்கவும்.
9x^{2}+6x+10=9
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
9x^{2}+6x+10-10=9-10
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 10-ஐக் கழிக்கவும்.
9x^{2}+6x=9-10
10-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
9x^{2}+6x=-1
9–இலிருந்து 10–ஐக் கழிக்கவும்.
\frac{9x^{2}+6x}{9}=-\frac{1}{9}
இரு பக்கங்களையும் 9-ஆல் வகுக்கவும்.
x^{2}+\frac{6}{9}x=-\frac{1}{9}
9-ஆல் வகுத்தல் 9-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}+\frac{2}{3}x=-\frac{1}{9}
3-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{6}{9}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(\frac{1}{3}\right)^{2}
\frac{1}{3}-ஐப் பெற, x உறுப்பின் ஈவான \frac{2}{3}-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{1}{3}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{1}{3}-ஐ வர்க்கமாக்கவும்.
x^{2}+\frac{2}{3}x+\frac{1}{9}=0
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{1}{9} உடன் -\frac{1}{9}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x+\frac{1}{3}\right)^{2}=0
காரணி x^{2}+\frac{2}{3}x+\frac{1}{9}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும் போது, அதை எப்போதும் \left(x+\frac{b}{2}\right)^{2} ஆகக் காரணிப்படுத்தலாம்.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{0}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{1}{3}=0 x+\frac{1}{3}=0
எளிமையாக்கவும்.
x=-\frac{1}{3} x=-\frac{1}{3}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{1}{3}-ஐக் கழிக்கவும்.
x=-\frac{1}{3}
இப்போது சமன்பாடு தீர்க்கப்பட்டது. தீர்வுகள் ஒன்றுதான்.