பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

7x^{2}-3x-5=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 7\left(-5\right)}}{2\times 7}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 7, b-க்குப் பதிலாக -3 மற்றும் c-க்குப் பதிலாக -5-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 7\left(-5\right)}}{2\times 7}
-3-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-3\right)±\sqrt{9-28\left(-5\right)}}{2\times 7}
7-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-3\right)±\sqrt{9+140}}{2\times 7}
-5-ஐ -28 முறை பெருக்கவும்.
x=\frac{-\left(-3\right)±\sqrt{149}}{2\times 7}
140-க்கு 9-ஐக் கூட்டவும்.
x=\frac{3±\sqrt{149}}{2\times 7}
-3-க்கு எதிரில் இருப்பது 3.
x=\frac{3±\sqrt{149}}{14}
7-ஐ 2 முறை பெருக்கவும்.
x=\frac{\sqrt{149}+3}{14}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{3±\sqrt{149}}{14}-ஐத் தீர்க்கவும். \sqrt{149}-க்கு 3-ஐக் கூட்டவும்.
x=\frac{3-\sqrt{149}}{14}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{3±\sqrt{149}}{14}-ஐத் தீர்க்கவும். 3–இலிருந்து \sqrt{149}–ஐக் கழிக்கவும்.
x=\frac{\sqrt{149}+3}{14} x=\frac{3-\sqrt{149}}{14}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
7x^{2}-3x-5=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
7x^{2}-3x-5-\left(-5\right)=-\left(-5\right)
சமன்பாட்டின் இரு பக்கங்களிலும் 5-ஐக் கூட்டவும்.
7x^{2}-3x=-\left(-5\right)
-5-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
7x^{2}-3x=5
0–இலிருந்து -5–ஐக் கழிக்கவும்.
\frac{7x^{2}-3x}{7}=\frac{5}{7}
இரு பக்கங்களையும் 7-ஆல் வகுக்கவும்.
x^{2}-\frac{3}{7}x=\frac{5}{7}
7-ஆல் வகுத்தல் 7-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-\frac{3}{7}x+\left(-\frac{3}{14}\right)^{2}=\frac{5}{7}+\left(-\frac{3}{14}\right)^{2}
-\frac{3}{14}-ஐப் பெற, x உறுப்பின் ஈவான -\frac{3}{7}-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{3}{14}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-\frac{3}{7}x+\frac{9}{196}=\frac{5}{7}+\frac{9}{196}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{3}{14}-ஐ வர்க்கமாக்கவும்.
x^{2}-\frac{3}{7}x+\frac{9}{196}=\frac{149}{196}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{9}{196} உடன் \frac{5}{7}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x-\frac{3}{14}\right)^{2}=\frac{149}{196}
காரணி x^{2}-\frac{3}{7}x+\frac{9}{196}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{3}{14}\right)^{2}}=\sqrt{\frac{149}{196}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{3}{14}=\frac{\sqrt{149}}{14} x-\frac{3}{14}=-\frac{\sqrt{149}}{14}
எளிமையாக்கவும்.
x=\frac{\sqrt{149}+3}{14} x=\frac{3-\sqrt{149}}{14}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{3}{14}-ஐக் கூட்டவும்.