பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

6x-1-9x^{2}=0
இரு பக்கங்களில் இருந்தும் 9x^{2}-ஐக் கழிக்கவும்.
-9x^{2}+6x-1=0
பல்லுறுப்புக் கோவையை வழக்கமான வடிவத்தில் இடுவதற்கு அதை மீண்டும் ஒழுங்குபடுத்தவும். உறுப்புகளை மிகஅதிக முதல் மிகக்குறைந்த அடுக்கு என்ற வரிசையில் இடவும்.
a+b=6 ab=-9\left(-1\right)=9
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை -9x^{2}+ax+bx-1-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,9 3,3
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் நேர்மறையாக இருக்கும். 9 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1+9=10 3+3=6
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=3 b=3
6 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(-9x^{2}+3x\right)+\left(3x-1\right)
-9x^{2}+6x-1 என்பதை \left(-9x^{2}+3x\right)+\left(3x-1\right) என மீண்டும் எழுதவும்.
-3x\left(3x-1\right)+3x-1
-9x^{2}+3x-இல் -3x ஐக் காரணிப்படுத்தவும்.
\left(3x-1\right)\left(-3x+1\right)
பரவல் பண்பைப் பயன்படுத்தி 3x-1 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=\frac{1}{3} x=\frac{1}{3}
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, 3x-1=0 மற்றும் -3x+1=0-ஐத் தீர்க்கவும்.
6x-1-9x^{2}=0
இரு பக்கங்களில் இருந்தும் 9x^{2}-ஐக் கழிக்கவும்.
-9x^{2}+6x-1=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-6±\sqrt{6^{2}-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக -9, b-க்குப் பதிலாக 6 மற்றும் c-க்குப் பதிலாக -1-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-6±\sqrt{36-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
6-ஐ வர்க்கமாக்கவும்.
x=\frac{-6±\sqrt{36+36\left(-1\right)}}{2\left(-9\right)}
-9-ஐ -4 முறை பெருக்கவும்.
x=\frac{-6±\sqrt{36-36}}{2\left(-9\right)}
-1-ஐ 36 முறை பெருக்கவும்.
x=\frac{-6±\sqrt{0}}{2\left(-9\right)}
-36-க்கு 36-ஐக் கூட்டவும்.
x=-\frac{6}{2\left(-9\right)}
0-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=-\frac{6}{-18}
-9-ஐ 2 முறை பெருக்கவும்.
x=\frac{1}{3}
6-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-6}{-18}-ஐ குறைந்த படிக்கு குறைக்கவும்.
6x-1-9x^{2}=0
இரு பக்கங்களில் இருந்தும் 9x^{2}-ஐக் கழிக்கவும்.
6x-9x^{2}=1
இரண்டு பக்கங்களிலும் 1-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
-9x^{2}+6x=1
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
\frac{-9x^{2}+6x}{-9}=\frac{1}{-9}
இரு பக்கங்களையும் -9-ஆல் வகுக்கவும்.
x^{2}+\frac{6}{-9}x=\frac{1}{-9}
-9-ஆல் வகுத்தல் -9-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-\frac{2}{3}x=\frac{1}{-9}
3-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{6}{-9}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x^{2}-\frac{2}{3}x=-\frac{1}{9}
1-ஐ -9-ஆல் வகுக்கவும்.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(-\frac{1}{3}\right)^{2}
-\frac{1}{3}-ஐப் பெற, x உறுப்பின் ஈவான -\frac{2}{3}-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{1}{3}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{1}{3}-ஐ வர்க்கமாக்கவும்.
x^{2}-\frac{2}{3}x+\frac{1}{9}=0
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{1}{9} உடன் -\frac{1}{9}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x-\frac{1}{3}\right)^{2}=0
காரணி x^{2}-\frac{2}{3}x+\frac{1}{9}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{0}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{1}{3}=0 x-\frac{1}{3}=0
எளிமையாக்கவும்.
x=\frac{1}{3} x=\frac{1}{3}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{1}{3}-ஐக் கூட்டவும்.
x=\frac{1}{3}
இப்போது சமன்பாடு தீர்க்கப்பட்டது. தீர்வுகள் ஒன்றுதான்.