பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
Tick mark Image
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
பிரிப்பு வர்க்கத் தேற்றத்தின்படி, அடுக்குக்கோவையின் எல்லா பிரிப்பு வர்க்கங்களும் \frac{p}{q} வடிவத்தில் இருக்கும், அதில் p ஆனது நிலையான 729-ஐ வகுக்கிறது மற்றும் q ஆனது மதிப்பில் பெரிய கெழுவான 64-ஐ வகுக்கிறது. அனைத்து விண்ணப்பதாரர்களின் பட்டியல் \frac{p}{q}.
x=-\frac{9}{4}
முழுமையான மிகச்சிறிய மதிப்பிலிருந்து தொடங்கி, முழு எண் மதிப்புகளை முயல்வதன் மூலம் அத்தகைய ஒரு வர்க்கத்தைக் கண்டறியவும். முழு எண் வர்க்கங்கள் கண்டறியப்படவில்லை என்றால், பின்னங்களை முயலவும்.
16x^{2}-36x+81=0
காரணி தேற்றத்தின்படி, ஒவ்வொரு வர்க்க k-க்கும் x-k-ஆனது அடுக்குக் கோவையின் காரணியாகும். 16x^{2}-36x+81-ஐப் பெற, 4\left(x+\frac{9}{4}\right)=4x+9-ஐ 64x^{3}+729-ஆல் வகுக்கவும். முடிவுகள் 0-க்குச் சமமாக உள்ளபோது சமன்பாட்டைத் தீர்க்கவும்.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
ax^{2}+bx+c=0 வடிவத்தில் உள்ள எல்லாச் சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தி தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரத்தில் a-க்குப் பதிலாக 16, b-க்குப் பதிலாக -36 மற்றும் c-க்கு பதிலாக 81-ஐ பதிலீடு செய்யவும்.
x=\frac{36±\sqrt{-3888}}{32}
கணக்கீடுகளைச் செய்யவும்.
x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
± நேர் எண்ணிலும் ± எதிர் எண்ணிலும் உள்ளபோது, சமன்பாடு 16x^{2}-36x+81=0-ஐச் சரிசெய்யவும்.
x=-\frac{9}{4} x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
காணப்படும் தீர்வுகள் அனைத்தையும் பட்டியலிடவும்.
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
பிரிப்பு வர்க்கத் தேற்றத்தின்படி, அடுக்குக்கோவையின் எல்லா பிரிப்பு வர்க்கங்களும் \frac{p}{q} வடிவத்தில் இருக்கும், அதில் p ஆனது நிலையான 729-ஐ வகுக்கிறது மற்றும் q ஆனது மதிப்பில் பெரிய கெழுவான 64-ஐ வகுக்கிறது. அனைத்து விண்ணப்பதாரர்களின் பட்டியல் \frac{p}{q}.
x=-\frac{9}{4}
முழுமையான மிகச்சிறிய மதிப்பிலிருந்து தொடங்கி, முழு எண் மதிப்புகளை முயல்வதன் மூலம் அத்தகைய ஒரு வர்க்கத்தைக் கண்டறியவும். முழு எண் வர்க்கங்கள் கண்டறியப்படவில்லை என்றால், பின்னங்களை முயலவும்.
16x^{2}-36x+81=0
காரணி தேற்றத்தின்படி, ஒவ்வொரு வர்க்க k-க்கும் x-k-ஆனது அடுக்குக் கோவையின் காரணியாகும். 16x^{2}-36x+81-ஐப் பெற, 4\left(x+\frac{9}{4}\right)=4x+9-ஐ 64x^{3}+729-ஆல் வகுக்கவும். முடிவுகள் 0-க்குச் சமமாக உள்ளபோது சமன்பாட்டைத் தீர்க்கவும்.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
ax^{2}+bx+c=0 வடிவத்தில் உள்ள எல்லாச் சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தி தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரத்தில் a-க்குப் பதிலாக 16, b-க்குப் பதிலாக -36 மற்றும் c-க்கு பதிலாக 81-ஐ பதிலீடு செய்யவும்.
x=\frac{36±\sqrt{-3888}}{32}
கணக்கீடுகளைச் செய்யவும்.
x\in \emptyset
எதிர்மறை எண்ணின் கனமூலம் அசல் புலத்தில் வரையறுக்கப்படவில்லை என்பதால், தீர்வுகள் கிடைக்காது.
x=-\frac{9}{4}
காணப்படும் தீர்வுகள் அனைத்தையும் பட்டியலிடவும்.