பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

6x^{2}-19x-36=0
இரு பக்கங்களில் இருந்தும் 36-ஐக் கழிக்கவும்.
a+b=-19 ab=6\left(-36\right)=-216
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை 6x^{2}+ax+bx-36-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-216 2,-108 3,-72 4,-54 6,-36 8,-27 9,-24 12,-18
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -216 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-216=-215 2-108=-106 3-72=-69 4-54=-50 6-36=-30 8-27=-19 9-24=-15 12-18=-6
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-27 b=8
-19 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(6x^{2}-27x\right)+\left(8x-36\right)
6x^{2}-19x-36 என்பதை \left(6x^{2}-27x\right)+\left(8x-36\right) என மீண்டும் எழுதவும்.
3x\left(2x-9\right)+4\left(2x-9\right)
முதல் குழுவில் 3x மற்றும் இரண்டாவது குழுவில் 4-ஐக் காரணிப்படுத்தவும்.
\left(2x-9\right)\left(3x+4\right)
பரவல் பண்பைப் பயன்படுத்தி 2x-9 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=\frac{9}{2} x=-\frac{4}{3}
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, 2x-9=0 மற்றும் 3x+4=0-ஐத் தீர்க்கவும்.
6x^{2}-19x=36
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
6x^{2}-19x-36=36-36
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 36-ஐக் கழிக்கவும்.
6x^{2}-19x-36=0
36-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 6\left(-36\right)}}{2\times 6}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 6, b-க்குப் பதிலாக -19 மற்றும் c-க்குப் பதிலாக -36-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 6\left(-36\right)}}{2\times 6}
-19-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-19\right)±\sqrt{361-24\left(-36\right)}}{2\times 6}
6-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-19\right)±\sqrt{361+864}}{2\times 6}
-36-ஐ -24 முறை பெருக்கவும்.
x=\frac{-\left(-19\right)±\sqrt{1225}}{2\times 6}
864-க்கு 361-ஐக் கூட்டவும்.
x=\frac{-\left(-19\right)±35}{2\times 6}
1225-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{19±35}{2\times 6}
-19-க்கு எதிரில் இருப்பது 19.
x=\frac{19±35}{12}
6-ஐ 2 முறை பெருக்கவும்.
x=\frac{54}{12}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{19±35}{12}-ஐத் தீர்க்கவும். 35-க்கு 19-ஐக் கூட்டவும்.
x=\frac{9}{2}
6-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{54}{12}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=-\frac{16}{12}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{19±35}{12}-ஐத் தீர்க்கவும். 19–இலிருந்து 35–ஐக் கழிக்கவும்.
x=-\frac{4}{3}
4-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-16}{12}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=\frac{9}{2} x=-\frac{4}{3}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
6x^{2}-19x=36
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
\frac{6x^{2}-19x}{6}=\frac{36}{6}
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
x^{2}-\frac{19}{6}x=\frac{36}{6}
6-ஆல் வகுத்தல் 6-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-\frac{19}{6}x=6
36-ஐ 6-ஆல் வகுக்கவும்.
x^{2}-\frac{19}{6}x+\left(-\frac{19}{12}\right)^{2}=6+\left(-\frac{19}{12}\right)^{2}
-\frac{19}{12}-ஐப் பெற, x உறுப்பின் ஈவான -\frac{19}{6}-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{19}{12}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-\frac{19}{6}x+\frac{361}{144}=6+\frac{361}{144}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{19}{12}-ஐ வர்க்கமாக்கவும்.
x^{2}-\frac{19}{6}x+\frac{361}{144}=\frac{1225}{144}
\frac{361}{144}-க்கு 6-ஐக் கூட்டவும்.
\left(x-\frac{19}{12}\right)^{2}=\frac{1225}{144}
காரணி x^{2}-\frac{19}{6}x+\frac{361}{144}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{19}{12}\right)^{2}}=\sqrt{\frac{1225}{144}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{19}{12}=\frac{35}{12} x-\frac{19}{12}=-\frac{35}{12}
எளிமையாக்கவும்.
x=\frac{9}{2} x=-\frac{4}{3}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{19}{12}-ஐக் கூட்டவும்.