x-க்காகத் தீர்க்கவும்
x=\frac{1}{6}\approx 0.166666667
x=2
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
6x^{2}-13x+4=2
4-இலிருந்து 2-ஐக் கழிக்கவும், தீர்வு 2.
6x^{2}-13x+4-2=0
இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
6x^{2}-13x+2=0
4-இலிருந்து 2-ஐக் கழிக்கவும், தீர்வு 2.
a+b=-13 ab=6\times 2=12
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை 6x^{2}+ax+bx+2-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,-12 -2,-6 -3,-4
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் எதிர்மறையாக இருக்கும். 12 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1-12=-13 -2-6=-8 -3-4=-7
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-12 b=-1
-13 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(6x^{2}-12x\right)+\left(-x+2\right)
6x^{2}-13x+2 என்பதை \left(6x^{2}-12x\right)+\left(-x+2\right) என மீண்டும் எழுதவும்.
6x\left(x-2\right)-\left(x-2\right)
முதல் குழுவில் 6x மற்றும் இரண்டாவது குழுவில் -1-ஐக் காரணிப்படுத்தவும்.
\left(x-2\right)\left(6x-1\right)
பரவல் பண்பைப் பயன்படுத்தி x-2 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=2 x=\frac{1}{6}
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-2=0 மற்றும் 6x-1=0-ஐத் தீர்க்கவும்.
6x^{2}-13x+4=2
4-இலிருந்து 2-ஐக் கழிக்கவும், தீர்வு 2.
6x^{2}-13x+4-2=0
இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
6x^{2}-13x+2=0
4-இலிருந்து 2-ஐக் கழிக்கவும், தீர்வு 2.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\times 2}}{2\times 6}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 6, b-க்குப் பதிலாக -13 மற்றும் c-க்குப் பதிலாக 2-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 6\times 2}}{2\times 6}
-13-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-13\right)±\sqrt{169-24\times 2}}{2\times 6}
6-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-13\right)±\sqrt{169-48}}{2\times 6}
2-ஐ -24 முறை பெருக்கவும்.
x=\frac{-\left(-13\right)±\sqrt{121}}{2\times 6}
-48-க்கு 169-ஐக் கூட்டவும்.
x=\frac{-\left(-13\right)±11}{2\times 6}
121-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{13±11}{2\times 6}
-13-க்கு எதிரில் இருப்பது 13.
x=\frac{13±11}{12}
6-ஐ 2 முறை பெருக்கவும்.
x=\frac{24}{12}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{13±11}{12}-ஐத் தீர்க்கவும். 11-க்கு 13-ஐக் கூட்டவும்.
x=2
24-ஐ 12-ஆல் வகுக்கவும்.
x=\frac{2}{12}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{13±11}{12}-ஐத் தீர்க்கவும். 13–இலிருந்து 11–ஐக் கழிக்கவும்.
x=\frac{1}{6}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{2}{12}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=2 x=\frac{1}{6}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
6x^{2}-13x+4=2
4-இலிருந்து 2-ஐக் கழிக்கவும், தீர்வு 2.
6x^{2}-13x=2-4
இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும்.
6x^{2}-13x=-2
2-இலிருந்து 4-ஐக் கழிக்கவும், தீர்வு -2.
\frac{6x^{2}-13x}{6}=-\frac{2}{6}
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
x^{2}-\frac{13}{6}x=-\frac{2}{6}
6-ஆல் வகுத்தல் 6-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-\frac{13}{6}x=-\frac{1}{3}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-2}{6}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x^{2}-\frac{13}{6}x+\left(-\frac{13}{12}\right)^{2}=-\frac{1}{3}+\left(-\frac{13}{12}\right)^{2}
-\frac{13}{12}-ஐப் பெற, x உறுப்பின் ஈவான -\frac{13}{6}-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{13}{12}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-\frac{13}{6}x+\frac{169}{144}=-\frac{1}{3}+\frac{169}{144}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{13}{12}-ஐ வர்க்கமாக்கவும்.
x^{2}-\frac{13}{6}x+\frac{169}{144}=\frac{121}{144}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{169}{144} உடன் -\frac{1}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x-\frac{13}{12}\right)^{2}=\frac{121}{144}
காரணி x^{2}-\frac{13}{6}x+\frac{169}{144}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{13}{12}\right)^{2}}=\sqrt{\frac{121}{144}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{13}{12}=\frac{11}{12} x-\frac{13}{12}=-\frac{11}{12}
எளிமையாக்கவும்.
x=2 x=\frac{1}{6}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{13}{12}-ஐக் கூட்டவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}