x-க்காகத் தீர்க்கவும்
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
6x^{2}-12=-x
இரு பக்கங்களில் இருந்தும் 12-ஐக் கழிக்கவும்.
6x^{2}-12+x=0
இரண்டு பக்கங்களிலும் x-ஐச் சேர்க்கவும்.
6x^{2}+x-12=0
பல்லுறுப்புக் கோவையை வழக்கமான வடிவத்தில் இடுவதற்கு அதை மீண்டும் ஒழுங்குபடுத்தவும். உறுப்புகளை மிகஅதிக முதல் மிகக்குறைந்த அடுக்கு என்ற வரிசையில் இடவும்.
a+b=1 ab=6\left(-12\right)=-72
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை 6x^{2}+ax+bx-12-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், எதிர்மறை எண்ணை விட நேர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -72 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-8 b=9
1 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(6x^{2}-8x\right)+\left(9x-12\right)
6x^{2}+x-12 என்பதை \left(6x^{2}-8x\right)+\left(9x-12\right) என மீண்டும் எழுதவும்.
2x\left(3x-4\right)+3\left(3x-4\right)
முதல் குழுவில் 2x மற்றும் இரண்டாவது குழுவில் 3-ஐக் காரணிப்படுத்தவும்.
\left(3x-4\right)\left(2x+3\right)
பரவல் பண்பைப் பயன்படுத்தி 3x-4 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=\frac{4}{3} x=-\frac{3}{2}
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, 3x-4=0 மற்றும் 2x+3=0-ஐத் தீர்க்கவும்.
6x^{2}-12=-x
இரு பக்கங்களில் இருந்தும் 12-ஐக் கழிக்கவும்.
6x^{2}-12+x=0
இரண்டு பக்கங்களிலும் x-ஐச் சேர்க்கவும்.
6x^{2}+x-12=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-1±\sqrt{1^{2}-4\times 6\left(-12\right)}}{2\times 6}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 6, b-க்குப் பதிலாக 1 மற்றும் c-க்குப் பதிலாக -12-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-1±\sqrt{1-4\times 6\left(-12\right)}}{2\times 6}
1-ஐ வர்க்கமாக்கவும்.
x=\frac{-1±\sqrt{1-24\left(-12\right)}}{2\times 6}
6-ஐ -4 முறை பெருக்கவும்.
x=\frac{-1±\sqrt{1+288}}{2\times 6}
-12-ஐ -24 முறை பெருக்கவும்.
x=\frac{-1±\sqrt{289}}{2\times 6}
288-க்கு 1-ஐக் கூட்டவும்.
x=\frac{-1±17}{2\times 6}
289-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-1±17}{12}
6-ஐ 2 முறை பெருக்கவும்.
x=\frac{16}{12}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-1±17}{12}-ஐத் தீர்க்கவும். 17-க்கு -1-ஐக் கூட்டவும்.
x=\frac{4}{3}
4-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{16}{12}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=-\frac{18}{12}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-1±17}{12}-ஐத் தீர்க்கவும். -1–இலிருந்து 17–ஐக் கழிக்கவும்.
x=-\frac{3}{2}
6-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-18}{12}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=\frac{4}{3} x=-\frac{3}{2}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
6x^{2}+x=12
இரண்டு பக்கங்களிலும் x-ஐச் சேர்க்கவும்.
\frac{6x^{2}+x}{6}=\frac{12}{6}
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
x^{2}+\frac{1}{6}x=\frac{12}{6}
6-ஆல் வகுத்தல் 6-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}+\frac{1}{6}x=2
12-ஐ 6-ஆல் வகுக்கவும்.
x^{2}+\frac{1}{6}x+\left(\frac{1}{12}\right)^{2}=2+\left(\frac{1}{12}\right)^{2}
\frac{1}{12}-ஐப் பெற, x உறுப்பின் ஈவான \frac{1}{6}-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{1}{12}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+\frac{1}{6}x+\frac{1}{144}=2+\frac{1}{144}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{1}{12}-ஐ வர்க்கமாக்கவும்.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{289}{144}
\frac{1}{144}-க்கு 2-ஐக் கூட்டவும்.
\left(x+\frac{1}{12}\right)^{2}=\frac{289}{144}
காரணி x^{2}+\frac{1}{6}x+\frac{1}{144}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+\frac{1}{12}\right)^{2}}=\sqrt{\frac{289}{144}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{1}{12}=\frac{17}{12} x+\frac{1}{12}=-\frac{17}{12}
எளிமையாக்கவும்.
x=\frac{4}{3} x=-\frac{3}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{1}{12}-ஐக் கழிக்கவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}