பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்
வினாடி வினா
Polynomial

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

6\left(x^{2}+3x-10\right)
6-ஐக் காரணிப்படுத்தவும்.
a+b=3 ab=1\left(-10\right)=-10
x^{2}+3x-10-ஐக் கருத்தில் கொள்ளவும். குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை x^{2}+ax+bx-10-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,10 -2,5
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், எதிர்மறை எண்ணை விட நேர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -10 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1+10=9 -2+5=3
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-2 b=5
3 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x^{2}-2x\right)+\left(5x-10\right)
x^{2}+3x-10 என்பதை \left(x^{2}-2x\right)+\left(5x-10\right) என மீண்டும் எழுதவும்.
x\left(x-2\right)+5\left(x-2\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 5-ஐக் காரணிப்படுத்தவும்.
\left(x-2\right)\left(x+5\right)
பரவல் பண்பைப் பயன்படுத்தி x-2 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
6\left(x-2\right)\left(x+5\right)
முழுமையான பின்னக் கோவையை மீண்டும் எழுதவும்.
6x^{2}+18x-60=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-18±\sqrt{18^{2}-4\times 6\left(-60\right)}}{2\times 6}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-18±\sqrt{324-4\times 6\left(-60\right)}}{2\times 6}
18-ஐ வர்க்கமாக்கவும்.
x=\frac{-18±\sqrt{324-24\left(-60\right)}}{2\times 6}
6-ஐ -4 முறை பெருக்கவும்.
x=\frac{-18±\sqrt{324+1440}}{2\times 6}
-60-ஐ -24 முறை பெருக்கவும்.
x=\frac{-18±\sqrt{1764}}{2\times 6}
1440-க்கு 324-ஐக் கூட்டவும்.
x=\frac{-18±42}{2\times 6}
1764-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-18±42}{12}
6-ஐ 2 முறை பெருக்கவும்.
x=\frac{24}{12}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-18±42}{12}-ஐத் தீர்க்கவும். 42-க்கு -18-ஐக் கூட்டவும்.
x=2
24-ஐ 12-ஆல் வகுக்கவும்.
x=-\frac{60}{12}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-18±42}{12}-ஐத் தீர்க்கவும். -18–இலிருந்து 42–ஐக் கழிக்கவும்.
x=-5
-60-ஐ 12-ஆல் வகுக்கவும்.
6x^{2}+18x-60=6\left(x-2\right)\left(x-\left(-5\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 2-ஐயும், x_{2}-க்கு -5-ஐயும் பதிலீடு செய்யவும்.
6x^{2}+18x-60=6\left(x-2\right)\left(x+5\right)
படிவம் p-\left(-q\right)-இன் கோவைகள் அனைத்தையும் p+q-க்கு எளிமையாக்கவும்.