x-க்காகத் தீர்க்கவும்
x=\frac{4}{5}=0.8
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
5x^{2}-8x=-\frac{16}{5}
இரு பக்கங்களில் இருந்தும் 8x-ஐக் கழிக்கவும்.
5x^{2}-8x+\frac{16}{5}=0
இரண்டு பக்கங்களிலும் \frac{16}{5}-ஐச் சேர்க்கவும்.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 5\times \frac{16}{5}}}{2\times 5}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 5, b-க்குப் பதிலாக -8 மற்றும் c-க்குப் பதிலாக \frac{16}{5}-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 5\times \frac{16}{5}}}{2\times 5}
-8-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-8\right)±\sqrt{64-20\times \frac{16}{5}}}{2\times 5}
5-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2\times 5}
\frac{16}{5}-ஐ -20 முறை பெருக்கவும்.
x=\frac{-\left(-8\right)±\sqrt{0}}{2\times 5}
-64-க்கு 64-ஐக் கூட்டவும்.
x=-\frac{-8}{2\times 5}
0-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{8}{2\times 5}
-8-க்கு எதிரில் இருப்பது 8.
x=\frac{8}{10}
5-ஐ 2 முறை பெருக்கவும்.
x=\frac{4}{5}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{8}{10}-ஐ குறைந்த படிக்கு குறைக்கவும்.
5x^{2}-8x=-\frac{16}{5}
இரு பக்கங்களில் இருந்தும் 8x-ஐக் கழிக்கவும்.
\frac{5x^{2}-8x}{5}=-\frac{\frac{16}{5}}{5}
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x^{2}-\frac{8}{5}x=-\frac{\frac{16}{5}}{5}
5-ஆல் வகுத்தல் 5-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-\frac{8}{5}x=-\frac{16}{25}
-\frac{16}{5}-ஐ 5-ஆல் வகுக்கவும்.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-\frac{16}{25}+\left(-\frac{4}{5}\right)^{2}
-\frac{4}{5}-ஐப் பெற, x உறுப்பின் ஈவான -\frac{8}{5}-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{4}{5}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{-16+16}{25}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{4}{5}-ஐ வர்க்கமாக்கவும்.
x^{2}-\frac{8}{5}x+\frac{16}{25}=0
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{16}{25} உடன் -\frac{16}{25}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x-\frac{4}{5}\right)^{2}=0
காரணி x^{2}-\frac{8}{5}x+\frac{16}{25}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{0}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{4}{5}=0 x-\frac{4}{5}=0
எளிமையாக்கவும்.
x=\frac{4}{5} x=\frac{4}{5}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{4}{5}-ஐக் கூட்டவும்.
x=\frac{4}{5}
இப்போது சமன்பாடு தீர்க்கப்பட்டது. தீர்வுகள் ஒன்றுதான்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}