பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

5\left(x^{2}+4x-12\right)
5-ஐக் காரணிப்படுத்தவும்.
a+b=4 ab=1\left(-12\right)=-12
x^{2}+4x-12-ஐக் கருத்தில் கொள்ளவும். குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை x^{2}+ax+bx-12-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,12 -2,6 -3,4
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், எதிர்மறை எண்ணை விட நேர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -12 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1+12=11 -2+6=4 -3+4=1
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-2 b=6
4 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x^{2}-2x\right)+\left(6x-12\right)
x^{2}+4x-12 என்பதை \left(x^{2}-2x\right)+\left(6x-12\right) என மீண்டும் எழுதவும்.
x\left(x-2\right)+6\left(x-2\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 6-ஐக் காரணிப்படுத்தவும்.
\left(x-2\right)\left(x+6\right)
பரவல் பண்பைப் பயன்படுத்தி x-2 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
5\left(x-2\right)\left(x+6\right)
முழுமையான பின்னக் கோவையை மீண்டும் எழுதவும்.
5x^{2}+20x-60=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-20±\sqrt{20^{2}-4\times 5\left(-60\right)}}{2\times 5}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-20±\sqrt{400-4\times 5\left(-60\right)}}{2\times 5}
20-ஐ வர்க்கமாக்கவும்.
x=\frac{-20±\sqrt{400-20\left(-60\right)}}{2\times 5}
5-ஐ -4 முறை பெருக்கவும்.
x=\frac{-20±\sqrt{400+1200}}{2\times 5}
-60-ஐ -20 முறை பெருக்கவும்.
x=\frac{-20±\sqrt{1600}}{2\times 5}
1200-க்கு 400-ஐக் கூட்டவும்.
x=\frac{-20±40}{2\times 5}
1600-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-20±40}{10}
5-ஐ 2 முறை பெருக்கவும்.
x=\frac{20}{10}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-20±40}{10}-ஐத் தீர்க்கவும். 40-க்கு -20-ஐக் கூட்டவும்.
x=2
20-ஐ 10-ஆல் வகுக்கவும்.
x=-\frac{60}{10}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-20±40}{10}-ஐத் தீர்க்கவும். -20–இலிருந்து 40–ஐக் கழிக்கவும்.
x=-6
-60-ஐ 10-ஆல் வகுக்கவும்.
5x^{2}+20x-60=5\left(x-2\right)\left(x-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 2-ஐயும், x_{2}-க்கு -6-ஐயும் பதிலீடு செய்யவும்.
5x^{2}+20x-60=5\left(x-2\right)\left(x+6\right)
படிவம் p-\left(-q\right)-இன் கோவைகள் அனைத்தையும் p+q-க்கு எளிமையாக்கவும்.