பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

5x^{2}+17x-12x=0
இரு பக்கங்களில் இருந்தும் 12x-ஐக் கழிக்கவும்.
5x^{2}+5x=0
17x மற்றும் -12x-ஐ இணைத்தால், தீர்வு 5x.
x=\frac{-5±\sqrt{5^{2}}}{2\times 5}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 5, b-க்குப் பதிலாக 5 மற்றும் c-க்குப் பதிலாக 0-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-5±5}{2\times 5}
5^{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-5±5}{10}
5-ஐ 2 முறை பெருக்கவும்.
x=\frac{0}{10}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-5±5}{10}-ஐத் தீர்க்கவும். 5-க்கு -5-ஐக் கூட்டவும்.
x=0
0-ஐ 10-ஆல் வகுக்கவும்.
x=-\frac{10}{10}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-5±5}{10}-ஐத் தீர்க்கவும். -5–இலிருந்து 5–ஐக் கழிக்கவும்.
x=-1
-10-ஐ 10-ஆல் வகுக்கவும்.
x=0 x=-1
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
5x^{2}+17x-12x=0
இரு பக்கங்களில் இருந்தும் 12x-ஐக் கழிக்கவும்.
5x^{2}+5x=0
17x மற்றும் -12x-ஐ இணைத்தால், தீர்வு 5x.
\frac{5x^{2}+5x}{5}=\frac{0}{5}
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x^{2}+\frac{5}{5}x=\frac{0}{5}
5-ஆல் வகுத்தல் 5-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}+x=\frac{0}{5}
5-ஐ 5-ஆல் வகுக்கவும்.
x^{2}+x=0
0-ஐ 5-ஆல் வகுக்கவும்.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
\frac{1}{2}-ஐப் பெற, x உறுப்பின் ஈவான 1-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{1}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+x+\frac{1}{4}=\frac{1}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{1}{2}-ஐ வர்க்கமாக்கவும்.
\left(x+\frac{1}{2}\right)^{2}=\frac{1}{4}
காரணி x^{2}+x+\frac{1}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{1}{2}=\frac{1}{2} x+\frac{1}{2}=-\frac{1}{2}
எளிமையாக்கவும்.
x=0 x=-1
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{1}{2}-ஐக் கழிக்கவும்.