x-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
x=\frac{1+\sqrt{167}i}{2}\approx 0.5+6.461423992i
x=\frac{-\sqrt{167}i+1}{2}\approx 0.5-6.461423992i
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
x^{2}-x+44=2
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x^{2}-x+44-2=2-2
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
x^{2}-x+44-2=0
2-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
x^{2}-x+42=0
44–இலிருந்து 2–ஐக் கழிக்கவும்.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 42}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -1 மற்றும் c-க்குப் பதிலாக 42-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-1\right)±\sqrt{1-168}}{2}
42-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-1\right)±\sqrt{-167}}{2}
-168-க்கு 1-ஐக் கூட்டவும்.
x=\frac{-\left(-1\right)±\sqrt{167}i}{2}
-167-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{1±\sqrt{167}i}{2}
-1-க்கு எதிரில் இருப்பது 1.
x=\frac{1+\sqrt{167}i}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{1±\sqrt{167}i}{2}-ஐத் தீர்க்கவும். i\sqrt{167}-க்கு 1-ஐக் கூட்டவும்.
x=\frac{-\sqrt{167}i+1}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{1±\sqrt{167}i}{2}-ஐத் தீர்க்கவும். 1–இலிருந்து i\sqrt{167}–ஐக் கழிக்கவும்.
x=\frac{1+\sqrt{167}i}{2} x=\frac{-\sqrt{167}i+1}{2}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
x^{2}-x+44=2
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
x^{2}-x+44-44=2-44
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 44-ஐக் கழிக்கவும்.
x^{2}-x=2-44
44-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
x^{2}-x=-42
2–இலிருந்து 44–ஐக் கழிக்கவும்.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-42+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2}-ஐப் பெற, x உறுப்பின் ஈவான -1-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{1}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-x+\frac{1}{4}=-42+\frac{1}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{1}{2}-ஐ வர்க்கமாக்கவும்.
x^{2}-x+\frac{1}{4}=-\frac{167}{4}
\frac{1}{4}-க்கு -42-ஐக் கூட்டவும்.
\left(x-\frac{1}{2}\right)^{2}=-\frac{167}{4}
காரணி x^{2}-x+\frac{1}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{167}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{1}{2}=\frac{\sqrt{167}i}{2} x-\frac{1}{2}=-\frac{\sqrt{167}i}{2}
எளிமையாக்கவும்.
x=\frac{1+\sqrt{167}i}{2} x=\frac{-\sqrt{167}i+1}{2}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{1}{2}-ஐக் கூட்டவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}