x-க்காகத் தீர்க்கவும்
x=-\frac{3}{14}\approx -0.214285714
x=\frac{1}{3}\approx 0.333333333
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
a+b=-5 ab=42\left(-3\right)=-126
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை 42x^{2}+ax+bx-3-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-126 2,-63 3,-42 6,-21 7,-18 9,-14
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -126 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-126=-125 2-63=-61 3-42=-39 6-21=-15 7-18=-11 9-14=-5
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-14 b=9
-5 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(42x^{2}-14x\right)+\left(9x-3\right)
42x^{2}-5x-3 என்பதை \left(42x^{2}-14x\right)+\left(9x-3\right) என மீண்டும் எழுதவும்.
14x\left(3x-1\right)+3\left(3x-1\right)
முதல் குழுவில் 14x மற்றும் இரண்டாவது குழுவில் 3-ஐக் காரணிப்படுத்தவும்.
\left(3x-1\right)\left(14x+3\right)
பரவல் பண்பைப் பயன்படுத்தி 3x-1 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=\frac{1}{3} x=-\frac{3}{14}
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, 3x-1=0 மற்றும் 14x+3=0-ஐத் தீர்க்கவும்.
42x^{2}-5x-3=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 42\left(-3\right)}}{2\times 42}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 42, b-க்குப் பதிலாக -5 மற்றும் c-க்குப் பதிலாக -3-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 42\left(-3\right)}}{2\times 42}
-5-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-5\right)±\sqrt{25-168\left(-3\right)}}{2\times 42}
42-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-5\right)±\sqrt{25+504}}{2\times 42}
-3-ஐ -168 முறை பெருக்கவும்.
x=\frac{-\left(-5\right)±\sqrt{529}}{2\times 42}
504-க்கு 25-ஐக் கூட்டவும்.
x=\frac{-\left(-5\right)±23}{2\times 42}
529-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{5±23}{2\times 42}
-5-க்கு எதிரில் இருப்பது 5.
x=\frac{5±23}{84}
42-ஐ 2 முறை பெருக்கவும்.
x=\frac{28}{84}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{5±23}{84}-ஐத் தீர்க்கவும். 23-க்கு 5-ஐக் கூட்டவும்.
x=\frac{1}{3}
28-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{28}{84}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=-\frac{18}{84}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{5±23}{84}-ஐத் தீர்க்கவும். 5–இலிருந்து 23–ஐக் கழிக்கவும்.
x=-\frac{3}{14}
6-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-18}{84}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=\frac{1}{3} x=-\frac{3}{14}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
42x^{2}-5x-3=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
42x^{2}-5x-3-\left(-3\right)=-\left(-3\right)
சமன்பாட்டின் இரு பக்கங்களிலும் 3-ஐக் கூட்டவும்.
42x^{2}-5x=-\left(-3\right)
-3-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
42x^{2}-5x=3
0–இலிருந்து -3–ஐக் கழிக்கவும்.
\frac{42x^{2}-5x}{42}=\frac{3}{42}
இரு பக்கங்களையும் 42-ஆல் வகுக்கவும்.
x^{2}-\frac{5}{42}x=\frac{3}{42}
42-ஆல் வகுத்தல் 42-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-\frac{5}{42}x=\frac{1}{14}
3-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{3}{42}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x^{2}-\frac{5}{42}x+\left(-\frac{5}{84}\right)^{2}=\frac{1}{14}+\left(-\frac{5}{84}\right)^{2}
-\frac{5}{84}-ஐப் பெற, x உறுப்பின் ஈவான -\frac{5}{42}-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{5}{84}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-\frac{5}{42}x+\frac{25}{7056}=\frac{1}{14}+\frac{25}{7056}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{5}{84}-ஐ வர்க்கமாக்கவும்.
x^{2}-\frac{5}{42}x+\frac{25}{7056}=\frac{529}{7056}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{25}{7056} உடன் \frac{1}{14}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x-\frac{5}{84}\right)^{2}=\frac{529}{7056}
காரணி x^{2}-\frac{5}{42}x+\frac{25}{7056}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{5}{84}\right)^{2}}=\sqrt{\frac{529}{7056}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{5}{84}=\frac{23}{84} x-\frac{5}{84}=-\frac{23}{84}
எளிமையாக்கவும்.
x=\frac{1}{3} x=-\frac{3}{14}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{5}{84}-ஐக் கூட்டவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}