பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

4\left(x^{2}-3x+9\right)
4-ஐக் காரணிப்படுத்தவும். x^{2}-3x+9 அடுக்குக்கோவையில் பிரிப்பு வர்க்கங்கள் எதுவும் இல்லாததால் அதனைப் பின்னமாக்க முடியவில்லை.
4x^{2}-12x+36=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 36}}{2\times 4}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 36}}{2\times 4}
-12-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 36}}{2\times 4}
4-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-12\right)±\sqrt{144-576}}{2\times 4}
36-ஐ -16 முறை பெருக்கவும்.
x=\frac{-\left(-12\right)±\sqrt{-432}}{2\times 4}
-576-க்கு 144-ஐக் கூட்டவும்.
4x^{2}-12x+36
எதிர்மறை எண்ணின் கனமூலம் அசல் புலத்தில் வரையறுக்கப்படவில்லை என்பதால், தீர்வுகள் கிடைக்காது. இருபடிப் பல்லுறுப்பானைக் காரணிப்படுத்த முடியாது.