பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்
வினாடி வினா
Quadratic Equation

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

4x^{2}+6x+1=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-6±\sqrt{6^{2}-4\times 4}}{2\times 4}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 4, b-க்குப் பதிலாக 6 மற்றும் c-க்குப் பதிலாக 1-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-6±\sqrt{36-4\times 4}}{2\times 4}
6-ஐ வர்க்கமாக்கவும்.
x=\frac{-6±\sqrt{36-16}}{2\times 4}
4-ஐ -4 முறை பெருக்கவும்.
x=\frac{-6±\sqrt{20}}{2\times 4}
-16-க்கு 36-ஐக் கூட்டவும்.
x=\frac{-6±2\sqrt{5}}{2\times 4}
20-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-6±2\sqrt{5}}{8}
4-ஐ 2 முறை பெருக்கவும்.
x=\frac{2\sqrt{5}-6}{8}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-6±2\sqrt{5}}{8}-ஐத் தீர்க்கவும். 2\sqrt{5}-க்கு -6-ஐக் கூட்டவும்.
x=\frac{\sqrt{5}-3}{4}
-6+2\sqrt{5}-ஐ 8-ஆல் வகுக்கவும்.
x=\frac{-2\sqrt{5}-6}{8}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-6±2\sqrt{5}}{8}-ஐத் தீர்க்கவும். -6–இலிருந்து 2\sqrt{5}–ஐக் கழிக்கவும்.
x=\frac{-\sqrt{5}-3}{4}
-6-2\sqrt{5}-ஐ 8-ஆல் வகுக்கவும்.
x=\frac{\sqrt{5}-3}{4} x=\frac{-\sqrt{5}-3}{4}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
4x^{2}+6x+1=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
4x^{2}+6x+1-1=-1
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 1-ஐக் கழிக்கவும்.
4x^{2}+6x=-1
1-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
\frac{4x^{2}+6x}{4}=-\frac{1}{4}
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x^{2}+\frac{6}{4}x=-\frac{1}{4}
4-ஆல் வகுத்தல் 4-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}+\frac{3}{2}x=-\frac{1}{4}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{6}{4}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=-\frac{1}{4}+\left(\frac{3}{4}\right)^{2}
\frac{3}{4}-ஐப் பெற, x உறுப்பின் ஈவான \frac{3}{2}-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{3}{4}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{1}{4}+\frac{9}{16}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{3}{4}-ஐ வர்க்கமாக்கவும்.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{16}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{9}{16} உடன் -\frac{1}{4}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x+\frac{3}{4}\right)^{2}=\frac{5}{16}
காரணி x^{2}+\frac{3}{2}x+\frac{9}{16}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{5}{16}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{3}{4}=\frac{\sqrt{5}}{4} x+\frac{3}{4}=-\frac{\sqrt{5}}{4}
எளிமையாக்கவும்.
x=\frac{\sqrt{5}-3}{4} x=\frac{-\sqrt{5}-3}{4}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{3}{4}-ஐக் கழிக்கவும்.