பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்
வினாடி வினா
Polynomial

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=5 ab=3\left(-2\right)=-6
குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை 3y^{2}+ay+by-2-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,6 -2,3
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், எதிர்மறை எண்ணை விட நேர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -6 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1+6=5 -2+3=1
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-1 b=6
5 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(3y^{2}-y\right)+\left(6y-2\right)
3y^{2}+5y-2 என்பதை \left(3y^{2}-y\right)+\left(6y-2\right) என மீண்டும் எழுதவும்.
y\left(3y-1\right)+2\left(3y-1\right)
முதல் குழுவில் y மற்றும் இரண்டாவது குழுவில் 2-ஐக் காரணிப்படுத்தவும்.
\left(3y-1\right)\left(y+2\right)
பரவல் பண்பைப் பயன்படுத்தி 3y-1 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
3y^{2}+5y-2=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
y=\frac{-5±\sqrt{5^{2}-4\times 3\left(-2\right)}}{2\times 3}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
y=\frac{-5±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
5-ஐ வர்க்கமாக்கவும்.
y=\frac{-5±\sqrt{25-12\left(-2\right)}}{2\times 3}
3-ஐ -4 முறை பெருக்கவும்.
y=\frac{-5±\sqrt{25+24}}{2\times 3}
-2-ஐ -12 முறை பெருக்கவும்.
y=\frac{-5±\sqrt{49}}{2\times 3}
24-க்கு 25-ஐக் கூட்டவும்.
y=\frac{-5±7}{2\times 3}
49-இன் வர்க்க மூலத்தை எடுக்கவும்.
y=\frac{-5±7}{6}
3-ஐ 2 முறை பெருக்கவும்.
y=\frac{2}{6}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு y=\frac{-5±7}{6}-ஐத் தீர்க்கவும். 7-க்கு -5-ஐக் கூட்டவும்.
y=\frac{1}{3}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{2}{6}-ஐ குறைந்த படிக்கு குறைக்கவும்.
y=-\frac{12}{6}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு y=\frac{-5±7}{6}-ஐத் தீர்க்கவும். -5–இலிருந்து 7–ஐக் கழிக்கவும்.
y=-2
-12-ஐ 6-ஆல் வகுக்கவும்.
3y^{2}+5y-2=3\left(y-\frac{1}{3}\right)\left(y-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு \frac{1}{3}-ஐயும், x_{2}-க்கு -2-ஐயும் பதிலீடு செய்யவும்.
3y^{2}+5y-2=3\left(y-\frac{1}{3}\right)\left(y+2\right)
படிவம் p-\left(-q\right)-இன் கோவைகள் அனைத்தையும் p+q-க்கு எளிமையாக்கவும்.
3y^{2}+5y-2=3\times \frac{3y-1}{3}\left(y+2\right)
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கழிப்பதன் மூலம், y-இலிருந்து \frac{1}{3}-ஐக் கழிக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
3y^{2}+5y-2=\left(3y-1\right)\left(y+2\right)
3 மற்றும் 3-இல் சிறந்த பொதுக் காரணி 3-ஐ ரத்துசெய்கிறது.