x, y-க்காகத் தீர்க்கவும்
x=\frac{9}{13}\approx 0.692307692
y=-\frac{5}{13}\approx -0.384615385
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
3x-5y=4,9x-2y=7
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
3x-5y=4
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
3x=5y+4
சமன்பாட்டின் இரு பக்கங்களிலும் 5y-ஐக் கூட்டவும்.
x=\frac{1}{3}\left(5y+4\right)
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=\frac{5}{3}y+\frac{4}{3}
5y+4-ஐ \frac{1}{3} முறை பெருக்கவும்.
9\left(\frac{5}{3}y+\frac{4}{3}\right)-2y=7
பிற சமன்பாடு 9x-2y=7-இல் x-க்கு \frac{5y+4}{3}-ஐப் பிரதியிடவும்.
15y+12-2y=7
\frac{5y+4}{3}-ஐ 9 முறை பெருக்கவும்.
13y+12=7
-2y-க்கு 15y-ஐக் கூட்டவும்.
13y=-5
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 12-ஐக் கழிக்கவும்.
y=-\frac{5}{13}
இரு பக்கங்களையும் 13-ஆல் வகுக்கவும்.
x=\frac{5}{3}\left(-\frac{5}{13}\right)+\frac{4}{3}
x=\frac{5}{3}y+\frac{4}{3}-இல் y-க்கு -\frac{5}{13}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{25}{39}+\frac{4}{3}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{5}{13}-ஐ \frac{5}{3} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{9}{13}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{25}{39} உடன் \frac{4}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{9}{13},y=-\frac{5}{13}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
3x-5y=4,9x-2y=7
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-5\times 9\right)}&-\frac{-5}{3\left(-2\right)-\left(-5\times 9\right)}\\-\frac{9}{3\left(-2\right)-\left(-5\times 9\right)}&\frac{3}{3\left(-2\right)-\left(-5\times 9\right)}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{39}&\frac{5}{39}\\-\frac{3}{13}&\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{39}\times 4+\frac{5}{39}\times 7\\-\frac{3}{13}\times 4+\frac{1}{13}\times 7\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{13}\\-\frac{5}{13}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{9}{13},y=-\frac{5}{13}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
3x-5y=4,9x-2y=7
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
9\times 3x+9\left(-5\right)y=9\times 4,3\times 9x+3\left(-2\right)y=3\times 7
3x மற்றும் 9x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 9-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் பெருக்கவும்.
27x-45y=36,27x-6y=21
எளிமையாக்கவும்.
27x-27x-45y+6y=36-21
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 27x-45y=36-இலிருந்து 27x-6y=21-ஐக் கழிக்கவும்.
-45y+6y=36-21
-27x-க்கு 27x-ஐக் கூட்டவும். விதிகள் 27x மற்றும் -27x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-39y=36-21
6y-க்கு -45y-ஐக் கூட்டவும்.
-39y=15
-21-க்கு 36-ஐக் கூட்டவும்.
y=-\frac{5}{13}
இரு பக்கங்களையும் -39-ஆல் வகுக்கவும்.
9x-2\left(-\frac{5}{13}\right)=7
9x-2y=7-இல் y-க்கு -\frac{5}{13}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
9x+\frac{10}{13}=7
-\frac{5}{13}-ஐ -2 முறை பெருக்கவும்.
9x=\frac{81}{13}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{10}{13}-ஐக் கழிக்கவும்.
x=\frac{9}{13}
இரு பக்கங்களையும் 9-ஆல் வகுக்கவும்.
x=\frac{9}{13},y=-\frac{5}{13}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}