பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3\left(x^{2}-3x+2\right)
3-ஐக் காரணிப்படுத்தவும்.
a+b=-3 ab=1\times 2=2
x^{2}-3x+2-ஐக் கருத்தில் கொள்ளவும். குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை x^{2}+ax+bx+2-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
a=-2 b=-1
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் எதிர்மறையாக இருக்கும். அத்தகைய ஜோடியானது அமைப்புத் தீர்வு மட்டுமே.
\left(x^{2}-2x\right)+\left(-x+2\right)
x^{2}-3x+2 என்பதை \left(x^{2}-2x\right)+\left(-x+2\right) என மீண்டும் எழுதவும்.
x\left(x-2\right)-\left(x-2\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் -1-ஐக் காரணிப்படுத்தவும்.
\left(x-2\right)\left(x-1\right)
பரவல் பண்பைப் பயன்படுத்தி x-2 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
3\left(x-2\right)\left(x-1\right)
முழுமையான பின்னக் கோவையை மீண்டும் எழுதவும்.
3x^{2}-9x+6=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\times 6}}{2\times 3}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 3\times 6}}{2\times 3}
-9-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-9\right)±\sqrt{81-12\times 6}}{2\times 3}
3-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-9\right)±\sqrt{81-72}}{2\times 3}
6-ஐ -12 முறை பெருக்கவும்.
x=\frac{-\left(-9\right)±\sqrt{9}}{2\times 3}
-72-க்கு 81-ஐக் கூட்டவும்.
x=\frac{-\left(-9\right)±3}{2\times 3}
9-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{9±3}{2\times 3}
-9-க்கு எதிரில் இருப்பது 9.
x=\frac{9±3}{6}
3-ஐ 2 முறை பெருக்கவும்.
x=\frac{12}{6}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{9±3}{6}-ஐத் தீர்க்கவும். 3-க்கு 9-ஐக் கூட்டவும்.
x=2
12-ஐ 6-ஆல் வகுக்கவும்.
x=\frac{6}{6}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{9±3}{6}-ஐத் தீர்க்கவும். 9–இலிருந்து 3–ஐக் கழிக்கவும்.
x=1
6-ஐ 6-ஆல் வகுக்கவும்.
3x^{2}-9x+6=3\left(x-2\right)\left(x-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 2-ஐயும், x_{2}-க்கு 1-ஐயும் பதிலீடு செய்யவும்.