பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=-2 ab=3\left(-8\right)=-24
குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை 3x^{2}+ax+bx-8-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-24 2,-12 3,-8 4,-6
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -24 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-6 b=4
-2 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(3x^{2}-6x\right)+\left(4x-8\right)
3x^{2}-2x-8 என்பதை \left(3x^{2}-6x\right)+\left(4x-8\right) என மீண்டும் எழுதவும்.
3x\left(x-2\right)+4\left(x-2\right)
முதல் குழுவில் 3x மற்றும் இரண்டாவது குழுவில் 4-ஐக் காரணிப்படுத்தவும்.
\left(x-2\right)\left(3x+4\right)
பரவல் பண்பைப் பயன்படுத்தி x-2 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
3x^{2}-2x-8=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-8\right)}}{2\times 3}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-8\right)}}{2\times 3}
-2-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-2\right)±\sqrt{4-12\left(-8\right)}}{2\times 3}
3-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-2\right)±\sqrt{4+96}}{2\times 3}
-8-ஐ -12 முறை பெருக்கவும்.
x=\frac{-\left(-2\right)±\sqrt{100}}{2\times 3}
96-க்கு 4-ஐக் கூட்டவும்.
x=\frac{-\left(-2\right)±10}{2\times 3}
100-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{2±10}{2\times 3}
-2-க்கு எதிரில் இருப்பது 2.
x=\frac{2±10}{6}
3-ஐ 2 முறை பெருக்கவும்.
x=\frac{12}{6}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{2±10}{6}-ஐத் தீர்க்கவும். 10-க்கு 2-ஐக் கூட்டவும்.
x=2
12-ஐ 6-ஆல் வகுக்கவும்.
x=-\frac{8}{6}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{2±10}{6}-ஐத் தீர்க்கவும். 2–இலிருந்து 10–ஐக் கழிக்கவும்.
x=-\frac{4}{3}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-8}{6}-ஐ குறைந்த படிக்கு குறைக்கவும்.
3x^{2}-2x-8=3\left(x-2\right)\left(x-\left(-\frac{4}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 2-ஐயும், x_{2}-க்கு -\frac{4}{3}-ஐயும் பதிலீடு செய்யவும்.
3x^{2}-2x-8=3\left(x-2\right)\left(x+\frac{4}{3}\right)
படிவம் p-\left(-q\right)-இன் கோவைகள் அனைத்தையும் p+q-க்கு எளிமையாக்கவும்.
3x^{2}-2x-8=3\left(x-2\right)\times \frac{3x+4}{3}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், x உடன் \frac{4}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
3x^{2}-2x-8=\left(x-2\right)\left(3x+4\right)
3 மற்றும் 3-இல் சிறந்த பொதுக் காரணி 3-ஐ ரத்துசெய்கிறது.