பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்
வினாடி வினா
Polynomial

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x^{2}+9x+6-90=0
இரு பக்கங்களில் இருந்தும் 90-ஐக் கழிக்கவும்.
3x^{2}+9x-84=0
6-இலிருந்து 90-ஐக் கழிக்கவும், தீர்வு -84.
x^{2}+3x-28=0
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
a+b=3 ab=1\left(-28\right)=-28
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை x^{2}+ax+bx-28-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,28 -2,14 -4,7
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், எதிர்மறை எண்ணை விட நேர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -28 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1+28=27 -2+14=12 -4+7=3
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-4 b=7
3 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x^{2}-4x\right)+\left(7x-28\right)
x^{2}+3x-28 என்பதை \left(x^{2}-4x\right)+\left(7x-28\right) என மீண்டும் எழுதவும்.
x\left(x-4\right)+7\left(x-4\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 7-ஐக் காரணிப்படுத்தவும்.
\left(x-4\right)\left(x+7\right)
பரவல் பண்பைப் பயன்படுத்தி x-4 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=4 x=-7
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-4=0 மற்றும் x+7=0-ஐத் தீர்க்கவும்.
3x^{2}+9x+6=90
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
3x^{2}+9x+6-90=90-90
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 90-ஐக் கழிக்கவும்.
3x^{2}+9x+6-90=0
90-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
3x^{2}+9x-84=0
6–இலிருந்து 90–ஐக் கழிக்கவும்.
x=\frac{-9±\sqrt{9^{2}-4\times 3\left(-84\right)}}{2\times 3}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 3, b-க்குப் பதிலாக 9 மற்றும் c-க்குப் பதிலாக -84-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-9±\sqrt{81-4\times 3\left(-84\right)}}{2\times 3}
9-ஐ வர்க்கமாக்கவும்.
x=\frac{-9±\sqrt{81-12\left(-84\right)}}{2\times 3}
3-ஐ -4 முறை பெருக்கவும்.
x=\frac{-9±\sqrt{81+1008}}{2\times 3}
-84-ஐ -12 முறை பெருக்கவும்.
x=\frac{-9±\sqrt{1089}}{2\times 3}
1008-க்கு 81-ஐக் கூட்டவும்.
x=\frac{-9±33}{2\times 3}
1089-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-9±33}{6}
3-ஐ 2 முறை பெருக்கவும்.
x=\frac{24}{6}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-9±33}{6}-ஐத் தீர்க்கவும். 33-க்கு -9-ஐக் கூட்டவும்.
x=4
24-ஐ 6-ஆல் வகுக்கவும்.
x=-\frac{42}{6}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-9±33}{6}-ஐத் தீர்க்கவும். -9–இலிருந்து 33–ஐக் கழிக்கவும்.
x=-7
-42-ஐ 6-ஆல் வகுக்கவும்.
x=4 x=-7
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
3x^{2}+9x+6=90
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
3x^{2}+9x+6-6=90-6
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 6-ஐக் கழிக்கவும்.
3x^{2}+9x=90-6
6-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
3x^{2}+9x=84
90–இலிருந்து 6–ஐக் கழிக்கவும்.
\frac{3x^{2}+9x}{3}=\frac{84}{3}
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x^{2}+\frac{9}{3}x=\frac{84}{3}
3-ஆல் வகுத்தல் 3-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}+3x=\frac{84}{3}
9-ஐ 3-ஆல் வகுக்கவும்.
x^{2}+3x=28
84-ஐ 3-ஆல் வகுக்கவும்.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=28+\left(\frac{3}{2}\right)^{2}
\frac{3}{2}-ஐப் பெற, x உறுப்பின் ஈவான 3-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{3}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+3x+\frac{9}{4}=28+\frac{9}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{3}{2}-ஐ வர்க்கமாக்கவும்.
x^{2}+3x+\frac{9}{4}=\frac{121}{4}
\frac{9}{4}-க்கு 28-ஐக் கூட்டவும்.
\left(x+\frac{3}{2}\right)^{2}=\frac{121}{4}
காரணி x^{2}+3x+\frac{9}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{3}{2}=\frac{11}{2} x+\frac{3}{2}=-\frac{11}{2}
எளிமையாக்கவும்.
x=4 x=-7
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{3}{2}-ஐக் கழிக்கவும்.