பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x^{2}x\left(x+1\right)+5xx\left(x+1\right)+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -1,0 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் x^{2}+x,x,x+1-இன் சிறிய பொது பெருக்கியான x\left(x+1\right)-ஆல் பெருக்கவும்.
3x^{3}\left(x+1\right)+5xx\left(x+1\right)+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும். 3-ஐப் பெற, 2 மற்றும் 1-ஐக் கூட்டவும்.
3x^{4}+3x^{3}+5xx\left(x+1\right)+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
3x^{3}-ஐ x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x^{4}+3x^{3}+5x^{2}\left(x+1\right)+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
x மற்றும் x-ஐப் பெருக்கவும், தீர்வு x^{2}.
3x^{4}+3x^{3}+5x^{3}+5x^{2}+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
5x^{2}-ஐ x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x^{4}+8x^{3}+5x^{2}+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
3x^{3} மற்றும் 5x^{3}-ஐ இணைத்தால், தீர்வு 8x^{3}.
3x^{4}+8x^{3}+5x^{2}+\left(x^{2}+x\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
x-ஐ x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x^{4}+8x^{3}+5x^{2}+7x^{2}+7x+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
x^{2}+x-ஐ 7-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x^{4}+8x^{3}+12x^{2}+7x+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
5x^{2} மற்றும் 7x^{2}-ஐ இணைத்தால், தீர்வு 12x^{2}.
3x^{4}+10x^{3}+12x^{2}+7x+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
8x^{3} மற்றும் 2x^{3}-ஐ இணைத்தால், தீர்வு 10x^{3}.
3x^{4}+10x^{3}+12x^{2}+10x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
7x மற்றும் 3x-ஐ இணைத்தால், தீர்வு 10x.
3x^{4}+10x^{3}+12x^{2}+10x+16=10x^{4}+12x^{2}+16x+10x^{3}+4-x\left(2+7x^{3}\right)
x+1-ஐ 10x^{3}+12x+4-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x^{4}+10x^{3}+12x^{2}+10x+16=10x^{4}+12x^{2}+16x+10x^{3}+4-\left(2x+7x^{4}\right)
x-ஐ 2+7x^{3}-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x^{4}+10x^{3}+12x^{2}+10x+16=10x^{4}+12x^{2}+16x+10x^{3}+4-2x-7x^{4}
2x+7x^{4}-இன் எதிர்ச்சொல்லைக் கண்டறிய, ஒவ்வொரு வார்த்தையின் எதிர்ச்சொல்லையும் கண்டறியவும்.
3x^{4}+10x^{3}+12x^{2}+10x+16=10x^{4}+12x^{2}+14x+10x^{3}+4-7x^{4}
16x மற்றும் -2x-ஐ இணைத்தால், தீர்வு 14x.
3x^{4}+10x^{3}+12x^{2}+10x+16=3x^{4}+12x^{2}+14x+10x^{3}+4
10x^{4} மற்றும் -7x^{4}-ஐ இணைத்தால், தீர்வு 3x^{4}.
3x^{4}+10x^{3}+12x^{2}+10x+16-3x^{4}=12x^{2}+14x+10x^{3}+4
இரு பக்கங்களில் இருந்தும் 3x^{4}-ஐக் கழிக்கவும்.
10x^{3}+12x^{2}+10x+16=12x^{2}+14x+10x^{3}+4
3x^{4} மற்றும் -3x^{4}-ஐ இணைத்தால், தீர்வு 0.
10x^{3}+12x^{2}+10x+16-12x^{2}=14x+10x^{3}+4
இரு பக்கங்களில் இருந்தும் 12x^{2}-ஐக் கழிக்கவும்.
10x^{3}+10x+16=14x+10x^{3}+4
12x^{2} மற்றும் -12x^{2}-ஐ இணைத்தால், தீர்வு 0.
10x^{3}+10x+16-14x=10x^{3}+4
இரு பக்கங்களில் இருந்தும் 14x-ஐக் கழிக்கவும்.
10x^{3}-4x+16=10x^{3}+4
10x மற்றும் -14x-ஐ இணைத்தால், தீர்வு -4x.
10x^{3}-4x+16-10x^{3}=4
இரு பக்கங்களில் இருந்தும் 10x^{3}-ஐக் கழிக்கவும்.
-4x+16=4
10x^{3} மற்றும் -10x^{3}-ஐ இணைத்தால், தீர்வு 0.
-4x=4-16
இரு பக்கங்களில் இருந்தும் 16-ஐக் கழிக்கவும்.
-4x=-12
4-இலிருந்து 16-ஐக் கழிக்கவும், தீர்வு -12.
x=\frac{-12}{-4}
இரு பக்கங்களையும் -4-ஆல் வகுக்கவும்.
x=3
3-ஐப் பெற, -4-ஐ -12-ஆல் வகுக்கவும்.