x-க்காகத் தீர்க்கவும்
x=\frac{\sqrt{21}-3}{5}\approx 0.316515139
x=\frac{-\sqrt{21}-3}{5}\approx -1.516515139
விளக்கப்படம்
வினாடி வினா
Quadratic Equation
25 { x }^{ 2 } +30x=12
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
25x^{2}+30x=12
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
25x^{2}+30x-12=12-12
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 12-ஐக் கழிக்கவும்.
25x^{2}+30x-12=0
12-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
x=\frac{-30±\sqrt{30^{2}-4\times 25\left(-12\right)}}{2\times 25}
இந்தச் சமன்பாடு வழக்கமான வடிவத்தில் உள்ளது: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} என்ற இருபடி சூத்திரத்தில் a-க்குப் பதிலாக 25, b-க்குப் பதிலாக 30 மற்றும் c-க்கு பதிலாக -12-ஐ பதலீடு செய்யவும்.
x=\frac{-30±\sqrt{900-4\times 25\left(-12\right)}}{2\times 25}
30-ஐ வர்க்கமாக்கவும்.
x=\frac{-30±\sqrt{900-100\left(-12\right)}}{2\times 25}
25-ஐ -4 முறை பெருக்கவும்.
x=\frac{-30±\sqrt{900+1200}}{2\times 25}
-12-ஐ -100 முறை பெருக்கவும்.
x=\frac{-30±\sqrt{2100}}{2\times 25}
1200-க்கு 900-ஐக் கூட்டவும்.
x=\frac{-30±10\sqrt{21}}{2\times 25}
2100-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-30±10\sqrt{21}}{50}
25-ஐ 2 முறை பெருக்கவும்.
x=\frac{10\sqrt{21}-30}{50}
இப்போது ± நேர்மறையாக உள்ளபோது x=\frac{-30±10\sqrt{21}}{50} சமன்பாட்டைத் தீர்க்கவும். 10\sqrt{21}-க்கு -30-ஐக் கூட்டவும்.
x=\frac{\sqrt{21}-3}{5}
-30+10\sqrt{21}-ஐ 50-ஆல் வகுக்கவும்.
x=\frac{-10\sqrt{21}-30}{50}
இப்போது ± எதிர்மறையாக உள்ளபோது x=\frac{-30±10\sqrt{21}}{50} சமன்பாட்டைத் தீர்க்கவும். -30–இலிருந்து 10\sqrt{21}–ஐக் கழிக்கவும்.
x=\frac{-\sqrt{21}-3}{5}
-30-10\sqrt{21}-ஐ 50-ஆல் வகுக்கவும்.
x=\frac{\sqrt{21}-3}{5} x=\frac{-\sqrt{21}-3}{5}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
25x^{2}+30x=12
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
\frac{25x^{2}+30x}{25}=\frac{12}{25}
இரு பக்கங்களையும் 25-ஆல் வகுக்கவும்.
x^{2}+\frac{30}{25}x=\frac{12}{25}
25-ஆல் வகுத்தல் 25-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}+\frac{6}{5}x=\frac{12}{25}
5-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{30}{25}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\frac{12}{25}+\left(\frac{3}{5}\right)^{2}
\frac{3}{5}-ஐப் பெற, x உறுப்பின் ஈவான \frac{6}{5}-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{3}{5}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{12+9}{25}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{3}{5}-ஐ வர்க்கமாக்கவும்.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{21}{25}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{9}{25} உடன் \frac{12}{25}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x+\frac{3}{5}\right)^{2}=\frac{21}{25}
காரணி x^{2}+\frac{6}{5}x+\frac{9}{25}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும் போது, அதை எப்போதும் \left(x+\frac{b}{2}\right)^{2} ஆகக் காரணிப்படுத்தலாம்.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{21}{25}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{3}{5}=\frac{\sqrt{21}}{5} x+\frac{3}{5}=-\frac{\sqrt{21}}{5}
எளிமையாக்கவும்.
x=\frac{\sqrt{21}-3}{5} x=\frac{-\sqrt{21}-3}{5}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{3}{5}-ஐக் கழிக்கவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}