பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

20x^{2}-28x-1=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 20\left(-1\right)}}{2\times 20}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 20, b-க்குப் பதிலாக -28 மற்றும் c-க்குப் பதிலாக -1-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 20\left(-1\right)}}{2\times 20}
-28-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-28\right)±\sqrt{784-80\left(-1\right)}}{2\times 20}
20-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-28\right)±\sqrt{784+80}}{2\times 20}
-1-ஐ -80 முறை பெருக்கவும்.
x=\frac{-\left(-28\right)±\sqrt{864}}{2\times 20}
80-க்கு 784-ஐக் கூட்டவும்.
x=\frac{-\left(-28\right)±12\sqrt{6}}{2\times 20}
864-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{28±12\sqrt{6}}{2\times 20}
-28-க்கு எதிரில் இருப்பது 28.
x=\frac{28±12\sqrt{6}}{40}
20-ஐ 2 முறை பெருக்கவும்.
x=\frac{12\sqrt{6}+28}{40}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{28±12\sqrt{6}}{40}-ஐத் தீர்க்கவும். 12\sqrt{6}-க்கு 28-ஐக் கூட்டவும்.
x=\frac{3\sqrt{6}+7}{10}
28+12\sqrt{6}-ஐ 40-ஆல் வகுக்கவும்.
x=\frac{28-12\sqrt{6}}{40}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{28±12\sqrt{6}}{40}-ஐத் தீர்க்கவும். 28–இலிருந்து 12\sqrt{6}–ஐக் கழிக்கவும்.
x=\frac{7-3\sqrt{6}}{10}
28-12\sqrt{6}-ஐ 40-ஆல் வகுக்கவும்.
x=\frac{3\sqrt{6}+7}{10} x=\frac{7-3\sqrt{6}}{10}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
20x^{2}-28x-1=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
20x^{2}-28x-1-\left(-1\right)=-\left(-1\right)
சமன்பாட்டின் இரு பக்கங்களிலும் 1-ஐக் கூட்டவும்.
20x^{2}-28x=-\left(-1\right)
-1-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
20x^{2}-28x=1
0–இலிருந்து -1–ஐக் கழிக்கவும்.
\frac{20x^{2}-28x}{20}=\frac{1}{20}
இரு பக்கங்களையும் 20-ஆல் வகுக்கவும்.
x^{2}+\left(-\frac{28}{20}\right)x=\frac{1}{20}
20-ஆல் வகுத்தல் 20-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-\frac{7}{5}x=\frac{1}{20}
4-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-28}{20}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x^{2}-\frac{7}{5}x+\left(-\frac{7}{10}\right)^{2}=\frac{1}{20}+\left(-\frac{7}{10}\right)^{2}
-\frac{7}{10}-ஐப் பெற, x உறுப்பின் ஈவான -\frac{7}{5}-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{7}{10}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{1}{20}+\frac{49}{100}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{7}{10}-ஐ வர்க்கமாக்கவும்.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{27}{50}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{49}{100} உடன் \frac{1}{20}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x-\frac{7}{10}\right)^{2}=\frac{27}{50}
காரணி x^{2}-\frac{7}{5}x+\frac{49}{100}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{7}{10}\right)^{2}}=\sqrt{\frac{27}{50}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{7}{10}=\frac{3\sqrt{6}}{10} x-\frac{7}{10}=-\frac{3\sqrt{6}}{10}
எளிமையாக்கவும்.
x=\frac{3\sqrt{6}+7}{10} x=\frac{7-3\sqrt{6}}{10}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{7}{10}-ஐக் கூட்டவும்.