பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=-3 ab=2\left(-5\right)=-10
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை 2x^{2}+ax+bx-5-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-10 2,-5
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -10 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-10=-9 2-5=-3
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-5 b=2
-3 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(2x^{2}-5x\right)+\left(2x-5\right)
2x^{2}-3x-5 என்பதை \left(2x^{2}-5x\right)+\left(2x-5\right) என மீண்டும் எழுதவும்.
x\left(2x-5\right)+2x-5
2x^{2}-5x-இல் x ஐக் காரணிப்படுத்தவும்.
\left(2x-5\right)\left(x+1\right)
பரவல் பண்பைப் பயன்படுத்தி 2x-5 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=\frac{5}{2} x=-1
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, 2x-5=0 மற்றும் x+1=0-ஐத் தீர்க்கவும்.
2x^{2}-3x-5=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
இந்தச் சமன்பாடு வழக்கமான வடிவத்தில் உள்ளது: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} என்ற இருபடி சூத்திரத்தில் a-க்குப் பதிலாக 2, b-க்குப் பதிலாக -3 மற்றும் c-க்கு பதிலாக -5-ஐ பதலீடு செய்யவும்.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
-3-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
2-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
-5-ஐ -8 முறை பெருக்கவும்.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
40-க்கு 9-ஐக் கூட்டவும்.
x=\frac{-\left(-3\right)±7}{2\times 2}
49-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{3±7}{2\times 2}
-3-க்கு எதிரில் இருப்பது 3.
x=\frac{3±7}{4}
2-ஐ 2 முறை பெருக்கவும்.
x=\frac{10}{4}
இப்போது ± நேர்மறையாக உள்ளபோது x=\frac{3±7}{4} சமன்பாட்டைத் தீர்க்கவும். 7-க்கு 3-ஐக் கூட்டவும்.
x=\frac{5}{2}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{10}{4}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=-\frac{4}{4}
இப்போது ± எதிர்மறையாக உள்ளபோது x=\frac{3±7}{4} சமன்பாட்டைத் தீர்க்கவும். 3–இலிருந்து 7–ஐக் கழிக்கவும்.
x=-1
-4-ஐ 4-ஆல் வகுக்கவும்.
x=\frac{5}{2} x=-1
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
2x^{2}-3x-5=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
2x^{2}-3x-5-\left(-5\right)=-\left(-5\right)
சமன்பாட்டின் இரு பக்கங்களிலும் 5-ஐக் கூட்டவும்.
2x^{2}-3x=-\left(-5\right)
-5-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
2x^{2}-3x=5
0–இலிருந்து -5–ஐக் கழிக்கவும்.
\frac{2x^{2}-3x}{2}=\frac{5}{2}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x^{2}-\frac{3}{2}x=\frac{5}{2}
2-ஆல் வகுத்தல் 2-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{4}-ஐப் பெற, x உறுப்பின் ஈவான -\frac{3}{2}-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{3}{4}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{3}{4}-ஐ வர்க்கமாக்கவும்.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{9}{16} உடன் \frac{5}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x-\frac{3}{4}\right)^{2}=\frac{49}{16}
காரணி x^{2}-\frac{3}{2}x+\frac{9}{16}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும் போது, அதை எப்போதும் \left(x+\frac{b}{2}\right)^{2} ஆகக் காரணிப்படுத்தலாம்.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{3}{4}=\frac{7}{4} x-\frac{3}{4}=-\frac{7}{4}
எளிமையாக்கவும்.
x=\frac{5}{2} x=-1
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{3}{4}-ஐக் கூட்டவும்.