பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=-3 ab=2\left(-14\right)=-28
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை 2x^{2}+ax+bx-14-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-28 2,-14 4,-7
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -28 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-28=-27 2-14=-12 4-7=-3
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-7 b=4
-3 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(2x^{2}-7x\right)+\left(4x-14\right)
2x^{2}-3x-14 என்பதை \left(2x^{2}-7x\right)+\left(4x-14\right) என மீண்டும் எழுதவும்.
x\left(2x-7\right)+2\left(2x-7\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 2-ஐக் காரணிப்படுத்தவும்.
\left(2x-7\right)\left(x+2\right)
பரவல் பண்பைப் பயன்படுத்தி 2x-7 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=\frac{7}{2} x=-2
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, 2x-7=0 மற்றும் x+2=0-ஐத் தீர்க்கவும்.
2x^{2}-3x-14=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-14\right)}}{2\times 2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 2, b-க்குப் பதிலாக -3 மற்றும் c-க்குப் பதிலாக -14-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-14\right)}}{2\times 2}
-3-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-14\right)}}{2\times 2}
2-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-3\right)±\sqrt{9+112}}{2\times 2}
-14-ஐ -8 முறை பெருக்கவும்.
x=\frac{-\left(-3\right)±\sqrt{121}}{2\times 2}
112-க்கு 9-ஐக் கூட்டவும்.
x=\frac{-\left(-3\right)±11}{2\times 2}
121-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{3±11}{2\times 2}
-3-க்கு எதிரில் இருப்பது 3.
x=\frac{3±11}{4}
2-ஐ 2 முறை பெருக்கவும்.
x=\frac{14}{4}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{3±11}{4}-ஐத் தீர்க்கவும். 11-க்கு 3-ஐக் கூட்டவும்.
x=\frac{7}{2}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{14}{4}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=-\frac{8}{4}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{3±11}{4}-ஐத் தீர்க்கவும். 3–இலிருந்து 11–ஐக் கழிக்கவும்.
x=-2
-8-ஐ 4-ஆல் வகுக்கவும்.
x=\frac{7}{2} x=-2
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
2x^{2}-3x-14=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
2x^{2}-3x-14-\left(-14\right)=-\left(-14\right)
சமன்பாட்டின் இரு பக்கங்களிலும் 14-ஐக் கூட்டவும்.
2x^{2}-3x=-\left(-14\right)
-14-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
2x^{2}-3x=14
0–இலிருந்து -14–ஐக் கழிக்கவும்.
\frac{2x^{2}-3x}{2}=\frac{14}{2}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x^{2}-\frac{3}{2}x=\frac{14}{2}
2-ஆல் வகுத்தல் 2-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-\frac{3}{2}x=7
14-ஐ 2-ஆல் வகுக்கவும்.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=7+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{4}-ஐப் பெற, x உறுப்பின் ஈவான -\frac{3}{2}-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{3}{4}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-\frac{3}{2}x+\frac{9}{16}=7+\frac{9}{16}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{3}{4}-ஐ வர்க்கமாக்கவும்.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{121}{16}
\frac{9}{16}-க்கு 7-ஐக் கூட்டவும்.
\left(x-\frac{3}{4}\right)^{2}=\frac{121}{16}
காரணி x^{2}-\frac{3}{2}x+\frac{9}{16}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{3}{4}=\frac{11}{4} x-\frac{3}{4}=-\frac{11}{4}
எளிமையாக்கவும்.
x=\frac{7}{2} x=-2
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{3}{4}-ஐக் கூட்டவும்.