பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2x^{2}+9x+7-3=0
இரு பக்கங்களில் இருந்தும் 3-ஐக் கழிக்கவும்.
2x^{2}+9x+4=0
7-இலிருந்து 3-ஐக் கழிக்கவும், தீர்வு 4.
a+b=9 ab=2\times 4=8
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை 2x^{2}+ax+bx+4-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,8 2,4
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் நேர்மறையாக இருக்கும். 8 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1+8=9 2+4=6
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=1 b=8
9 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(2x^{2}+x\right)+\left(8x+4\right)
2x^{2}+9x+4 என்பதை \left(2x^{2}+x\right)+\left(8x+4\right) என மீண்டும் எழுதவும்.
x\left(2x+1\right)+4\left(2x+1\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 4-ஐக் காரணிப்படுத்தவும்.
\left(2x+1\right)\left(x+4\right)
பரவல் பண்பைப் பயன்படுத்தி 2x+1 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=-\frac{1}{2} x=-4
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, 2x+1=0 மற்றும் x+4=0-ஐத் தீர்க்கவும்.
2x^{2}+9x+7=3
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
2x^{2}+9x+7-3=3-3
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3-ஐக் கழிக்கவும்.
2x^{2}+9x+7-3=0
3-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
2x^{2}+9x+4=0
7–இலிருந்து 3–ஐக் கழிக்கவும்.
x=\frac{-9±\sqrt{9^{2}-4\times 2\times 4}}{2\times 2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 2, b-க்குப் பதிலாக 9 மற்றும் c-க்குப் பதிலாக 4-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-9±\sqrt{81-4\times 2\times 4}}{2\times 2}
9-ஐ வர்க்கமாக்கவும்.
x=\frac{-9±\sqrt{81-8\times 4}}{2\times 2}
2-ஐ -4 முறை பெருக்கவும்.
x=\frac{-9±\sqrt{81-32}}{2\times 2}
4-ஐ -8 முறை பெருக்கவும்.
x=\frac{-9±\sqrt{49}}{2\times 2}
-32-க்கு 81-ஐக் கூட்டவும்.
x=\frac{-9±7}{2\times 2}
49-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-9±7}{4}
2-ஐ 2 முறை பெருக்கவும்.
x=-\frac{2}{4}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-9±7}{4}-ஐத் தீர்க்கவும். 7-க்கு -9-ஐக் கூட்டவும்.
x=-\frac{1}{2}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-2}{4}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=-\frac{16}{4}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-9±7}{4}-ஐத் தீர்க்கவும். -9–இலிருந்து 7–ஐக் கழிக்கவும்.
x=-4
-16-ஐ 4-ஆல் வகுக்கவும்.
x=-\frac{1}{2} x=-4
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
2x^{2}+9x+7=3
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
2x^{2}+9x+7-7=3-7
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 7-ஐக் கழிக்கவும்.
2x^{2}+9x=3-7
7-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
2x^{2}+9x=-4
3–இலிருந்து 7–ஐக் கழிக்கவும்.
\frac{2x^{2}+9x}{2}=-\frac{4}{2}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x^{2}+\frac{9}{2}x=-\frac{4}{2}
2-ஆல் வகுத்தல் 2-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}+\frac{9}{2}x=-2
-4-ஐ 2-ஆல் வகுக்கவும்.
x^{2}+\frac{9}{2}x+\left(\frac{9}{4}\right)^{2}=-2+\left(\frac{9}{4}\right)^{2}
\frac{9}{4}-ஐப் பெற, x உறுப்பின் ஈவான \frac{9}{2}-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{9}{4}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+\frac{9}{2}x+\frac{81}{16}=-2+\frac{81}{16}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{9}{4}-ஐ வர்க்கமாக்கவும்.
x^{2}+\frac{9}{2}x+\frac{81}{16}=\frac{49}{16}
\frac{81}{16}-க்கு -2-ஐக் கூட்டவும்.
\left(x+\frac{9}{4}\right)^{2}=\frac{49}{16}
காரணி x^{2}+\frac{9}{2}x+\frac{81}{16}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+\frac{9}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{9}{4}=\frac{7}{4} x+\frac{9}{4}=-\frac{7}{4}
எளிமையாக்கவும்.
x=-\frac{1}{2} x=-4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{9}{4}-ஐக் கழிக்கவும்.