காரணி
2\left(p-4\right)\left(p-1\right)
மதிப்பிடவும்
2\left(p-4\right)\left(p-1\right)
வினாடி வினா
Polynomial
2 p ^ { 2 } - 10 p + 8
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
2\left(p^{2}-5p+4\right)
2-ஐக் காரணிப்படுத்தவும்.
a+b=-5 ab=1\times 4=4
p^{2}-5p+4-ஐக் கருத்தில் கொள்ளவும். குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை p^{2}+ap+bp+4-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,-4 -2,-2
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் எதிர்மறையாக இருக்கும். 4 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1-4=-5 -2-2=-4
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-4 b=-1
-5 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(p^{2}-4p\right)+\left(-p+4\right)
p^{2}-5p+4 என்பதை \left(p^{2}-4p\right)+\left(-p+4\right) என மீண்டும் எழுதவும்.
p\left(p-4\right)-\left(p-4\right)
முதல் குழுவில் p மற்றும் இரண்டாவது குழுவில் -1-ஐக் காரணிப்படுத்தவும்.
\left(p-4\right)\left(p-1\right)
பரவல் பண்பைப் பயன்படுத்தி p-4 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
2\left(p-4\right)\left(p-1\right)
முழுமையான பின்னக் கோவையை மீண்டும் எழுதவும்.
2p^{2}-10p+8=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
p=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 8}}{2\times 2}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
p=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 8}}{2\times 2}
-10-ஐ வர்க்கமாக்கவும்.
p=\frac{-\left(-10\right)±\sqrt{100-8\times 8}}{2\times 2}
2-ஐ -4 முறை பெருக்கவும்.
p=\frac{-\left(-10\right)±\sqrt{100-64}}{2\times 2}
8-ஐ -8 முறை பெருக்கவும்.
p=\frac{-\left(-10\right)±\sqrt{36}}{2\times 2}
-64-க்கு 100-ஐக் கூட்டவும்.
p=\frac{-\left(-10\right)±6}{2\times 2}
36-இன் வர்க்க மூலத்தை எடுக்கவும்.
p=\frac{10±6}{2\times 2}
-10-க்கு எதிரில் இருப்பது 10.
p=\frac{10±6}{4}
2-ஐ 2 முறை பெருக்கவும்.
p=\frac{16}{4}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு p=\frac{10±6}{4}-ஐத் தீர்க்கவும். 6-க்கு 10-ஐக் கூட்டவும்.
p=4
16-ஐ 4-ஆல் வகுக்கவும்.
p=\frac{4}{4}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு p=\frac{10±6}{4}-ஐத் தீர்க்கவும். 10–இலிருந்து 6–ஐக் கழிக்கவும்.
p=1
4-ஐ 4-ஆல் வகுக்கவும்.
2p^{2}-10p+8=2\left(p-4\right)\left(p-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 4-ஐயும், x_{2}-க்கு 1-ஐயும் பதிலீடு செய்யவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}