m-க்காகத் தீர்க்கவும்
m=-4
m = \frac{3}{2} = 1\frac{1}{2} = 1.5
வினாடி வினா
Polynomial
2 m ^ { 2 } + 5 m - 12 = 0
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
a+b=5 ab=2\left(-12\right)=-24
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை 2m^{2}+am+bm-12-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,24 -2,12 -3,8 -4,6
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், எதிர்மறை எண்ணை விட நேர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -24 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-3 b=8
5 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(2m^{2}-3m\right)+\left(8m-12\right)
2m^{2}+5m-12 என்பதை \left(2m^{2}-3m\right)+\left(8m-12\right) என மீண்டும் எழுதவும்.
m\left(2m-3\right)+4\left(2m-3\right)
முதல் குழுவில் m மற்றும் இரண்டாவது குழுவில் 4-ஐக் காரணிப்படுத்தவும்.
\left(2m-3\right)\left(m+4\right)
பரவல் பண்பைப் பயன்படுத்தி 2m-3 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
m=\frac{3}{2} m=-4
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, 2m-3=0 மற்றும் m+4=0-ஐத் தீர்க்கவும்.
2m^{2}+5m-12=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
m=\frac{-5±\sqrt{5^{2}-4\times 2\left(-12\right)}}{2\times 2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 2, b-க்குப் பதிலாக 5 மற்றும் c-க்குப் பதிலாக -12-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
m=\frac{-5±\sqrt{25-4\times 2\left(-12\right)}}{2\times 2}
5-ஐ வர்க்கமாக்கவும்.
m=\frac{-5±\sqrt{25-8\left(-12\right)}}{2\times 2}
2-ஐ -4 முறை பெருக்கவும்.
m=\frac{-5±\sqrt{25+96}}{2\times 2}
-12-ஐ -8 முறை பெருக்கவும்.
m=\frac{-5±\sqrt{121}}{2\times 2}
96-க்கு 25-ஐக் கூட்டவும்.
m=\frac{-5±11}{2\times 2}
121-இன் வர்க்க மூலத்தை எடுக்கவும்.
m=\frac{-5±11}{4}
2-ஐ 2 முறை பெருக்கவும்.
m=\frac{6}{4}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு m=\frac{-5±11}{4}-ஐத் தீர்க்கவும். 11-க்கு -5-ஐக் கூட்டவும்.
m=\frac{3}{2}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{6}{4}-ஐ குறைந்த படிக்கு குறைக்கவும்.
m=-\frac{16}{4}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு m=\frac{-5±11}{4}-ஐத் தீர்க்கவும். -5–இலிருந்து 11–ஐக் கழிக்கவும்.
m=-4
-16-ஐ 4-ஆல் வகுக்கவும்.
m=\frac{3}{2} m=-4
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
2m^{2}+5m-12=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
2m^{2}+5m-12-\left(-12\right)=-\left(-12\right)
சமன்பாட்டின் இரு பக்கங்களிலும் 12-ஐக் கூட்டவும்.
2m^{2}+5m=-\left(-12\right)
-12-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
2m^{2}+5m=12
0–இலிருந்து -12–ஐக் கழிக்கவும்.
\frac{2m^{2}+5m}{2}=\frac{12}{2}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
m^{2}+\frac{5}{2}m=\frac{12}{2}
2-ஆல் வகுத்தல் 2-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
m^{2}+\frac{5}{2}m=6
12-ஐ 2-ஆல் வகுக்கவும்.
m^{2}+\frac{5}{2}m+\left(\frac{5}{4}\right)^{2}=6+\left(\frac{5}{4}\right)^{2}
\frac{5}{4}-ஐப் பெற, x உறுப்பின் ஈவான \frac{5}{2}-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{5}{4}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
m^{2}+\frac{5}{2}m+\frac{25}{16}=6+\frac{25}{16}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{5}{4}-ஐ வர்க்கமாக்கவும்.
m^{2}+\frac{5}{2}m+\frac{25}{16}=\frac{121}{16}
\frac{25}{16}-க்கு 6-ஐக் கூட்டவும்.
\left(m+\frac{5}{4}\right)^{2}=\frac{121}{16}
காரணி m^{2}+\frac{5}{2}m+\frac{25}{16}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(m+\frac{5}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
m+\frac{5}{4}=\frac{11}{4} m+\frac{5}{4}=-\frac{11}{4}
எளிமையாக்கவும்.
m=\frac{3}{2} m=-4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{5}{4}-ஐக் கழிக்கவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}