பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
a-க்காகத் தீர்க்கவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2a^{2}=3+3a+2
3-ஐ 1+a-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
2a^{2}=5+3a
3 மற்றும் 2-ஐக் கூட்டவும், தீர்வு 5.
2a^{2}-5=3a
இரு பக்கங்களில் இருந்தும் 5-ஐக் கழிக்கவும்.
2a^{2}-5-3a=0
இரு பக்கங்களில் இருந்தும் 3a-ஐக் கழிக்கவும்.
2a^{2}-3a-5=0
பல்லுறுப்புக் கோவையை வழக்கமான வடிவத்தில் இடுவதற்கு அதை மீண்டும் ஒழுங்குபடுத்தவும். உறுப்புகளை மிகஅதிக முதல் மிகக்குறைந்த அடுக்கு என்ற வரிசையில் இடவும்.
a+b=-3 ab=2\left(-5\right)=-10
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை 2a^{2}+aa+ba-5-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-10 2,-5
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -10 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-10=-9 2-5=-3
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-5 b=2
-3 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(2a^{2}-5a\right)+\left(2a-5\right)
2a^{2}-3a-5 என்பதை \left(2a^{2}-5a\right)+\left(2a-5\right) என மீண்டும் எழுதவும்.
a\left(2a-5\right)+2a-5
2a^{2}-5a-இல் a ஐக் காரணிப்படுத்தவும்.
\left(2a-5\right)\left(a+1\right)
பரவல் பண்பைப் பயன்படுத்தி 2a-5 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
a=\frac{5}{2} a=-1
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, 2a-5=0 மற்றும் a+1=0-ஐத் தீர்க்கவும்.
2a^{2}=3+3a+2
3-ஐ 1+a-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
2a^{2}=5+3a
3 மற்றும் 2-ஐக் கூட்டவும், தீர்வு 5.
2a^{2}-5=3a
இரு பக்கங்களில் இருந்தும் 5-ஐக் கழிக்கவும்.
2a^{2}-5-3a=0
இரு பக்கங்களில் இருந்தும் 3a-ஐக் கழிக்கவும்.
2a^{2}-3a-5=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 2, b-க்குப் பதிலாக -3 மற்றும் c-க்குப் பதிலாக -5-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
a=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
-3-ஐ வர்க்கமாக்கவும்.
a=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
2-ஐ -4 முறை பெருக்கவும்.
a=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
-5-ஐ -8 முறை பெருக்கவும்.
a=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
40-க்கு 9-ஐக் கூட்டவும்.
a=\frac{-\left(-3\right)±7}{2\times 2}
49-இன் வர்க்க மூலத்தை எடுக்கவும்.
a=\frac{3±7}{2\times 2}
-3-க்கு எதிரில் இருப்பது 3.
a=\frac{3±7}{4}
2-ஐ 2 முறை பெருக்கவும்.
a=\frac{10}{4}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு a=\frac{3±7}{4}-ஐத் தீர்க்கவும். 7-க்கு 3-ஐக் கூட்டவும்.
a=\frac{5}{2}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{10}{4}-ஐ குறைந்த படிக்கு குறைக்கவும்.
a=-\frac{4}{4}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு a=\frac{3±7}{4}-ஐத் தீர்க்கவும். 3–இலிருந்து 7–ஐக் கழிக்கவும்.
a=-1
-4-ஐ 4-ஆல் வகுக்கவும்.
a=\frac{5}{2} a=-1
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
2a^{2}=3+3a+2
3-ஐ 1+a-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
2a^{2}=5+3a
3 மற்றும் 2-ஐக் கூட்டவும், தீர்வு 5.
2a^{2}-3a=5
இரு பக்கங்களில் இருந்தும் 3a-ஐக் கழிக்கவும்.
\frac{2a^{2}-3a}{2}=\frac{5}{2}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
a^{2}-\frac{3}{2}a=\frac{5}{2}
2-ஆல் வகுத்தல் 2-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
a^{2}-\frac{3}{2}a+\left(-\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{4}-ஐப் பெற, x உறுப்பின் ஈவான -\frac{3}{2}-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{3}{4}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
a^{2}-\frac{3}{2}a+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{3}{4}-ஐ வர்க்கமாக்கவும்.
a^{2}-\frac{3}{2}a+\frac{9}{16}=\frac{49}{16}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{9}{16} உடன் \frac{5}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(a-\frac{3}{4}\right)^{2}=\frac{49}{16}
காரணி a^{2}-\frac{3}{2}a+\frac{9}{16}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(a-\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
a-\frac{3}{4}=\frac{7}{4} a-\frac{3}{4}=-\frac{7}{4}
எளிமையாக்கவும்.
a=\frac{5}{2} a=-1
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{3}{4}-ஐக் கூட்டவும்.