பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

p+q=5 pq=2\left(-12\right)=-24
குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை 2a^{2}+pa+qa-12-ஆக மீண்டும் எழுத வேண்டும். p மற்றும் q-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,24 -2,12 -3,8 -4,6
pq எதிர்மறையாக இருப்பதால், p மற்றும் q எதிரெதிர் குறிகளைக் கொண்டிருக்கும். p+q நேர்மறையாக இருப்பதால், எதிர்மறை எண்ணை விட நேர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -24 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
p=-3 q=8
5 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(2a^{2}-3a\right)+\left(8a-12\right)
2a^{2}+5a-12 என்பதை \left(2a^{2}-3a\right)+\left(8a-12\right) என மீண்டும் எழுதவும்.
a\left(2a-3\right)+4\left(2a-3\right)
முதல் குழுவில் a மற்றும் இரண்டாவது குழுவில் 4-ஐக் காரணிப்படுத்தவும்.
\left(2a-3\right)\left(a+4\right)
பரவல் பண்பைப் பயன்படுத்தி 2a-3 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
2a^{2}+5a-12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
a=\frac{-5±\sqrt{5^{2}-4\times 2\left(-12\right)}}{2\times 2}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
a=\frac{-5±\sqrt{25-4\times 2\left(-12\right)}}{2\times 2}
5-ஐ வர்க்கமாக்கவும்.
a=\frac{-5±\sqrt{25-8\left(-12\right)}}{2\times 2}
2-ஐ -4 முறை பெருக்கவும்.
a=\frac{-5±\sqrt{25+96}}{2\times 2}
-12-ஐ -8 முறை பெருக்கவும்.
a=\frac{-5±\sqrt{121}}{2\times 2}
96-க்கு 25-ஐக் கூட்டவும்.
a=\frac{-5±11}{2\times 2}
121-இன் வர்க்க மூலத்தை எடுக்கவும்.
a=\frac{-5±11}{4}
2-ஐ 2 முறை பெருக்கவும்.
a=\frac{6}{4}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு a=\frac{-5±11}{4}-ஐத் தீர்க்கவும். 11-க்கு -5-ஐக் கூட்டவும்.
a=\frac{3}{2}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{6}{4}-ஐ குறைந்த படிக்கு குறைக்கவும்.
a=-\frac{16}{4}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு a=\frac{-5±11}{4}-ஐத் தீர்க்கவும். -5–இலிருந்து 11–ஐக் கழிக்கவும்.
a=-4
-16-ஐ 4-ஆல் வகுக்கவும்.
2a^{2}+5a-12=2\left(a-\frac{3}{2}\right)\left(a-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு \frac{3}{2}-ஐயும், x_{2}-க்கு -4-ஐயும் பதிலீடு செய்யவும்.
2a^{2}+5a-12=2\left(a-\frac{3}{2}\right)\left(a+4\right)
படிவம் p-\left(-q\right)-இன் கோவைகள் அனைத்தையும் p+q-க்கு எளிமையாக்கவும்.
2a^{2}+5a-12=2\times \frac{2a-3}{2}\left(a+4\right)
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கழிப்பதன் மூலம், a-இலிருந்து \frac{3}{2}-ஐக் கழிக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
2a^{2}+5a-12=\left(2a-3\right)\left(a+4\right)
2 மற்றும் 2-இல் சிறந்த பொதுக் காரணி 2-ஐ ரத்துசெய்கிறது.