பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2x^{2}-2x=1
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
2x^{2}-2x-1=1-1
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 1-ஐக் கழிக்கவும்.
2x^{2}-2x-1=0
1-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
இந்தச் சமன்பாடு வழக்கமான வடிவத்தில் உள்ளது: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} என்ற இருபடி சூத்திரத்தில் a-க்குப் பதிலாக 2, b-க்குப் பதிலாக -2 மற்றும் c-க்கு பதிலாக -1-ஐ பதலீடு செய்யவும்.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-1\right)}}{2\times 2}
-2-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-1\right)}}{2\times 2}
2-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2\times 2}
-1-ஐ -8 முறை பெருக்கவும்.
x=\frac{-\left(-2\right)±\sqrt{12}}{2\times 2}
8-க்கு 4-ஐக் கூட்டவும்.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2\times 2}
12-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{2±2\sqrt{3}}{2\times 2}
-2-க்கு எதிரில் இருப்பது 2.
x=\frac{2±2\sqrt{3}}{4}
2-ஐ 2 முறை பெருக்கவும்.
x=\frac{2\sqrt{3}+2}{4}
இப்போது ± நேர்மறையாக உள்ளபோது x=\frac{2±2\sqrt{3}}{4} சமன்பாட்டைத் தீர்க்கவும். 2\sqrt{3}-க்கு 2-ஐக் கூட்டவும்.
x=\frac{\sqrt{3}+1}{2}
2+2\sqrt{3}-ஐ 4-ஆல் வகுக்கவும்.
x=\frac{2-2\sqrt{3}}{4}
இப்போது ± எதிர்மறையாக உள்ளபோது x=\frac{2±2\sqrt{3}}{4} சமன்பாட்டைத் தீர்க்கவும். 2–இலிருந்து 2\sqrt{3}–ஐக் கழிக்கவும்.
x=\frac{1-\sqrt{3}}{2}
2-2\sqrt{3}-ஐ 4-ஆல் வகுக்கவும்.
x=\frac{\sqrt{3}+1}{2} x=\frac{1-\sqrt{3}}{2}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
2x^{2}-2x=1
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
\frac{2x^{2}-2x}{2}=\frac{1}{2}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x^{2}+\left(-\frac{2}{2}\right)x=\frac{1}{2}
2-ஆல் வகுத்தல் 2-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-x=\frac{1}{2}
-2-ஐ 2-ஆல் வகுக்கவும்.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2}-ஐப் பெற, x உறுப்பின் ஈவான -1-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{1}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-x+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{1}{2}-ஐ வர்க்கமாக்கவும்.
x^{2}-x+\frac{1}{4}=\frac{3}{4}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{1}{4} உடன் \frac{1}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x-\frac{1}{2}\right)^{2}=\frac{3}{4}
காரணி x^{2}-x+\frac{1}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும் போது, அதை எப்போதும் \left(x+\frac{b}{2}\right)^{2} ஆகக் காரணிப்படுத்தலாம்.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{1}{2}=\frac{\sqrt{3}}{2} x-\frac{1}{2}=-\frac{\sqrt{3}}{2}
எளிமையாக்கவும்.
x=\frac{\sqrt{3}+1}{2} x=\frac{1-\sqrt{3}}{2}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{1}{2}-ஐக் கூட்டவும்.