பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=1 ab=2\left(-6\right)=-12
குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை 2x^{2}+ax+bx-6-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,12 -2,6 -3,4
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், எதிர்மறை எண்ணை விட நேர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -12 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1+12=11 -2+6=4 -3+4=1
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-3 b=4
1 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(2x^{2}-3x\right)+\left(4x-6\right)
2x^{2}+x-6 என்பதை \left(2x^{2}-3x\right)+\left(4x-6\right) என மீண்டும் எழுதவும்.
x\left(2x-3\right)+2\left(2x-3\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 2-ஐக் காரணிப்படுத்தவும்.
\left(2x-3\right)\left(x+2\right)
பரவல் பண்பைப் பயன்படுத்தி 2x-3 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
2x^{2}+x-6=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-6\right)}}{2\times 2}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-1±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
1-ஐ வர்க்கமாக்கவும்.
x=\frac{-1±\sqrt{1-8\left(-6\right)}}{2\times 2}
2-ஐ -4 முறை பெருக்கவும்.
x=\frac{-1±\sqrt{1+48}}{2\times 2}
-6-ஐ -8 முறை பெருக்கவும்.
x=\frac{-1±\sqrt{49}}{2\times 2}
48-க்கு 1-ஐக் கூட்டவும்.
x=\frac{-1±7}{2\times 2}
49-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-1±7}{4}
2-ஐ 2 முறை பெருக்கவும்.
x=\frac{6}{4}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-1±7}{4}-ஐத் தீர்க்கவும். 7-க்கு -1-ஐக் கூட்டவும்.
x=\frac{3}{2}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{6}{4}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=-\frac{8}{4}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-1±7}{4}-ஐத் தீர்க்கவும். -1–இலிருந்து 7–ஐக் கழிக்கவும்.
x=-2
-8-ஐ 4-ஆல் வகுக்கவும்.
2x^{2}+x-6=2\left(x-\frac{3}{2}\right)\left(x-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு \frac{3}{2}-ஐயும், x_{2}-க்கு -2-ஐயும் பதிலீடு செய்யவும்.
2x^{2}+x-6=2\left(x-\frac{3}{2}\right)\left(x+2\right)
படிவம் p-\left(-q\right)-இன் கோவைகள் அனைத்தையும் p+q-க்கு எளிமையாக்கவும்.
2x^{2}+x-6=2\times \frac{2x-3}{2}\left(x+2\right)
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கழிப்பதன் மூலம், x-இலிருந்து \frac{3}{2}-ஐக் கழிக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
2x^{2}+x-6=\left(2x-3\right)\left(x+2\right)
2 மற்றும் 2-இல் சிறந்த பொதுக் காரணி 2-ஐ ரத்துசெய்கிறது.