x-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
x=-\sqrt{13}i\approx -0-3.605551275i
x=\sqrt{13}i\approx 3.605551275i
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
2x^{2}=6-32
இரு பக்கங்களில் இருந்தும் 32-ஐக் கழிக்கவும்.
2x^{2}=-26
6-இலிருந்து 32-ஐக் கழிக்கவும், தீர்வு -26.
x^{2}=\frac{-26}{2}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x^{2}=-13
-13-ஐப் பெற, 2-ஐ -26-ஆல் வகுக்கவும்.
x=\sqrt{13}i x=-\sqrt{13}i
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
2x^{2}+32-6=0
இரு பக்கங்களில் இருந்தும் 6-ஐக் கழிக்கவும்.
2x^{2}+26=0
32-இலிருந்து 6-ஐக் கழிக்கவும், தீர்வு 26.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 26}}{2\times 2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 2, b-க்குப் பதிலாக 0 மற்றும் c-க்குப் பதிலாக 26-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{0±\sqrt{-4\times 2\times 26}}{2\times 2}
0-ஐ வர்க்கமாக்கவும்.
x=\frac{0±\sqrt{-8\times 26}}{2\times 2}
2-ஐ -4 முறை பெருக்கவும்.
x=\frac{0±\sqrt{-208}}{2\times 2}
26-ஐ -8 முறை பெருக்கவும்.
x=\frac{0±4\sqrt{13}i}{2\times 2}
-208-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{0±4\sqrt{13}i}{4}
2-ஐ 2 முறை பெருக்கவும்.
x=\sqrt{13}i
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{0±4\sqrt{13}i}{4}-ஐத் தீர்க்கவும்.
x=-\sqrt{13}i
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{0±4\sqrt{13}i}{4}-ஐத் தீர்க்கவும்.
x=\sqrt{13}i x=-\sqrt{13}i
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}