மதிப்பிடவும்
4\left(\sqrt{3}+\sqrt{6}\right)\approx 16.726162201
காரணி
4 {(\sqrt{3} + \sqrt{6})} = 16.726162201
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
2\times 2\sqrt{3}+\frac{4\sqrt{18}}{\sqrt{3}}
காரணி 12=2^{2}\times 3. தயாரிப்பின் வர்க்க மூலத்தை \sqrt{2^{2}\times 3} பிரிவின் வர்க்க மூலமாக மீண்டும் எழுதவும் \sqrt{2^{2}}\sqrt{3}. 2^{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
4\sqrt{3}+\frac{4\sqrt{18}}{\sqrt{3}}
2 மற்றும் 2-ஐப் பெருக்கவும், தீர்வு 4.
4\sqrt{3}+\frac{4\times 3\sqrt{2}}{\sqrt{3}}
காரணி 18=3^{2}\times 2. தயாரிப்பின் வர்க்க மூலத்தை \sqrt{3^{2}\times 2} பிரிவின் வர்க்க மூலமாக மீண்டும் எழுதவும் \sqrt{3^{2}}\sqrt{2}. 3^{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
4\sqrt{3}+\frac{12\sqrt{2}}{\sqrt{3}}
4 மற்றும் 3-ஐப் பெருக்கவும், தீர்வு 12.
4\sqrt{3}+\frac{12\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
பகுதி மற்றும் விகுதியினை \sqrt{3} ஆல் பெருக்கி \frac{12\sqrt{2}}{\sqrt{3}}-இன் விகுதியினை விகித எண்ணாக மாற்றுங்கள்.
4\sqrt{3}+\frac{12\sqrt{2}\sqrt{3}}{3}
\sqrt{3}-இன் வர்க்கம் 3 ஆகும்.
4\sqrt{3}+\frac{12\sqrt{6}}{3}
\sqrt{2} மற்றும் \sqrt{3}-ஐப் பெருக்க, வர்க்கமூலத்தின் கீழ் எண்களைப் பெருக்கவும்.
4\sqrt{3}+4\sqrt{6}
4\sqrt{6}-ஐப் பெற, 3-ஐ 12\sqrt{6}-ஆல் வகுக்கவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}