பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x\left(16x+32\right)=0
x-ஐக் காரணிப்படுத்தவும்.
x=0 x=-2
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x=0 மற்றும் 16x+32=0-ஐத் தீர்க்கவும்.
16x^{2}+32x=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-32±\sqrt{32^{2}}}{2\times 16}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 16, b-க்குப் பதிலாக 32 மற்றும் c-க்குப் பதிலாக 0-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-32±32}{2\times 16}
32^{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-32±32}{32}
16-ஐ 2 முறை பெருக்கவும்.
x=\frac{0}{32}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-32±32}{32}-ஐத் தீர்க்கவும். 32-க்கு -32-ஐக் கூட்டவும்.
x=0
0-ஐ 32-ஆல் வகுக்கவும்.
x=-\frac{64}{32}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-32±32}{32}-ஐத் தீர்க்கவும். -32–இலிருந்து 32–ஐக் கழிக்கவும்.
x=-2
-64-ஐ 32-ஆல் வகுக்கவும்.
x=0 x=-2
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
16x^{2}+32x=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
\frac{16x^{2}+32x}{16}=\frac{0}{16}
இரு பக்கங்களையும் 16-ஆல் வகுக்கவும்.
x^{2}+\frac{32}{16}x=\frac{0}{16}
16-ஆல் வகுத்தல் 16-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}+2x=\frac{0}{16}
32-ஐ 16-ஆல் வகுக்கவும்.
x^{2}+2x=0
0-ஐ 16-ஆல் வகுக்கவும்.
x^{2}+2x+1^{2}=1^{2}
1-ஐப் பெற, x உறுப்பின் ஈவான 2-ஐ 2-ஆல் வகுக்கவும். பிறகு 1-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+2x+1=1
1-ஐ வர்க்கமாக்கவும்.
\left(x+1\right)^{2}=1
காரணி x^{2}+2x+1. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+1\right)^{2}}=\sqrt{1}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+1=1 x+1=-1
எளிமையாக்கவும்.
x=0 x=-2
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 1-ஐக் கழிக்கவும்.