x-க்காகத் தீர்க்கவும்
x = -\frac{9}{8} = -1\frac{1}{8} = -1.125
x=\frac{1}{2}=0.5
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
a+b=10 ab=16\left(-9\right)=-144
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை 16x^{2}+ax+bx-9-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,144 -2,72 -3,48 -4,36 -6,24 -8,18 -9,16 -12,12
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், எதிர்மறை எண்ணை விட நேர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -144 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1+144=143 -2+72=70 -3+48=45 -4+36=32 -6+24=18 -8+18=10 -9+16=7 -12+12=0
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-8 b=18
10 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(16x^{2}-8x\right)+\left(18x-9\right)
16x^{2}+10x-9 என்பதை \left(16x^{2}-8x\right)+\left(18x-9\right) என மீண்டும் எழுதவும்.
8x\left(2x-1\right)+9\left(2x-1\right)
முதல் குழுவில் 8x மற்றும் இரண்டாவது குழுவில் 9-ஐக் காரணிப்படுத்தவும்.
\left(2x-1\right)\left(8x+9\right)
பரவல் பண்பைப் பயன்படுத்தி 2x-1 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=\frac{1}{2} x=-\frac{9}{8}
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, 2x-1=0 மற்றும் 8x+9=0-ஐத் தீர்க்கவும்.
16x^{2}+10x-9=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-10±\sqrt{10^{2}-4\times 16\left(-9\right)}}{2\times 16}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 16, b-க்குப் பதிலாக 10 மற்றும் c-க்குப் பதிலாக -9-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-10±\sqrt{100-4\times 16\left(-9\right)}}{2\times 16}
10-ஐ வர்க்கமாக்கவும்.
x=\frac{-10±\sqrt{100-64\left(-9\right)}}{2\times 16}
16-ஐ -4 முறை பெருக்கவும்.
x=\frac{-10±\sqrt{100+576}}{2\times 16}
-9-ஐ -64 முறை பெருக்கவும்.
x=\frac{-10±\sqrt{676}}{2\times 16}
576-க்கு 100-ஐக் கூட்டவும்.
x=\frac{-10±26}{2\times 16}
676-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-10±26}{32}
16-ஐ 2 முறை பெருக்கவும்.
x=\frac{16}{32}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-10±26}{32}-ஐத் தீர்க்கவும். 26-க்கு -10-ஐக் கூட்டவும்.
x=\frac{1}{2}
16-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{16}{32}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=-\frac{36}{32}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-10±26}{32}-ஐத் தீர்க்கவும். -10–இலிருந்து 26–ஐக் கழிக்கவும்.
x=-\frac{9}{8}
4-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-36}{32}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=\frac{1}{2} x=-\frac{9}{8}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
16x^{2}+10x-9=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
16x^{2}+10x-9-\left(-9\right)=-\left(-9\right)
சமன்பாட்டின் இரு பக்கங்களிலும் 9-ஐக் கூட்டவும்.
16x^{2}+10x=-\left(-9\right)
-9-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
16x^{2}+10x=9
0–இலிருந்து -9–ஐக் கழிக்கவும்.
\frac{16x^{2}+10x}{16}=\frac{9}{16}
இரு பக்கங்களையும் 16-ஆல் வகுக்கவும்.
x^{2}+\frac{10}{16}x=\frac{9}{16}
16-ஆல் வகுத்தல் 16-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}+\frac{5}{8}x=\frac{9}{16}
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{10}{16}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x^{2}+\frac{5}{8}x+\left(\frac{5}{16}\right)^{2}=\frac{9}{16}+\left(\frac{5}{16}\right)^{2}
\frac{5}{16}-ஐப் பெற, x உறுப்பின் ஈவான \frac{5}{8}-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{5}{16}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+\frac{5}{8}x+\frac{25}{256}=\frac{9}{16}+\frac{25}{256}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{5}{16}-ஐ வர்க்கமாக்கவும்.
x^{2}+\frac{5}{8}x+\frac{25}{256}=\frac{169}{256}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{25}{256} உடன் \frac{9}{16}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x+\frac{5}{16}\right)^{2}=\frac{169}{256}
காரணி x^{2}+\frac{5}{8}x+\frac{25}{256}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+\frac{5}{16}\right)^{2}}=\sqrt{\frac{169}{256}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{5}{16}=\frac{13}{16} x+\frac{5}{16}=-\frac{13}{16}
எளிமையாக்கவும்.
x=\frac{1}{2} x=-\frac{9}{8}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{5}{16}-ஐக் கழிக்கவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}