பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=13 ab=12\times 3=36
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை 12x^{2}+ax+bx+3-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,36 2,18 3,12 4,9 6,6
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் நேர்மறையாக இருக்கும். 36 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=4 b=9
13 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(12x^{2}+4x\right)+\left(9x+3\right)
12x^{2}+13x+3 என்பதை \left(12x^{2}+4x\right)+\left(9x+3\right) என மீண்டும் எழுதவும்.
4x\left(3x+1\right)+3\left(3x+1\right)
முதல் குழுவில் 4x மற்றும் இரண்டாவது குழுவில் 3-ஐக் காரணிப்படுத்தவும்.
\left(3x+1\right)\left(4x+3\right)
பரவல் பண்பைப் பயன்படுத்தி 3x+1 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=-\frac{1}{3} x=-\frac{3}{4}
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, 3x+1=0 மற்றும் 4x+3=0-ஐத் தீர்க்கவும்.
12x^{2}+13x+3=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-13±\sqrt{13^{2}-4\times 12\times 3}}{2\times 12}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 12, b-க்குப் பதிலாக 13 மற்றும் c-க்குப் பதிலாக 3-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-13±\sqrt{169-4\times 12\times 3}}{2\times 12}
13-ஐ வர்க்கமாக்கவும்.
x=\frac{-13±\sqrt{169-48\times 3}}{2\times 12}
12-ஐ -4 முறை பெருக்கவும்.
x=\frac{-13±\sqrt{169-144}}{2\times 12}
3-ஐ -48 முறை பெருக்கவும்.
x=\frac{-13±\sqrt{25}}{2\times 12}
-144-க்கு 169-ஐக் கூட்டவும்.
x=\frac{-13±5}{2\times 12}
25-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-13±5}{24}
12-ஐ 2 முறை பெருக்கவும்.
x=-\frac{8}{24}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-13±5}{24}-ஐத் தீர்க்கவும். 5-க்கு -13-ஐக் கூட்டவும்.
x=-\frac{1}{3}
8-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-8}{24}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=-\frac{18}{24}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-13±5}{24}-ஐத் தீர்க்கவும். -13–இலிருந்து 5–ஐக் கழிக்கவும்.
x=-\frac{3}{4}
6-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-18}{24}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=-\frac{1}{3} x=-\frac{3}{4}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
12x^{2}+13x+3=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
12x^{2}+13x+3-3=-3
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3-ஐக் கழிக்கவும்.
12x^{2}+13x=-3
3-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
\frac{12x^{2}+13x}{12}=-\frac{3}{12}
இரு பக்கங்களையும் 12-ஆல் வகுக்கவும்.
x^{2}+\frac{13}{12}x=-\frac{3}{12}
12-ஆல் வகுத்தல் 12-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}+\frac{13}{12}x=-\frac{1}{4}
3-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-3}{12}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x^{2}+\frac{13}{12}x+\left(\frac{13}{24}\right)^{2}=-\frac{1}{4}+\left(\frac{13}{24}\right)^{2}
\frac{13}{24}-ஐப் பெற, x உறுப்பின் ஈவான \frac{13}{12}-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{13}{24}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+\frac{13}{12}x+\frac{169}{576}=-\frac{1}{4}+\frac{169}{576}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{13}{24}-ஐ வர்க்கமாக்கவும்.
x^{2}+\frac{13}{12}x+\frac{169}{576}=\frac{25}{576}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{169}{576} உடன் -\frac{1}{4}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x+\frac{13}{24}\right)^{2}=\frac{25}{576}
காரணி x^{2}+\frac{13}{12}x+\frac{169}{576}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+\frac{13}{24}\right)^{2}}=\sqrt{\frac{25}{576}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{13}{24}=\frac{5}{24} x+\frac{13}{24}=-\frac{5}{24}
எளிமையாக்கவும்.
x=-\frac{1}{3} x=-\frac{3}{4}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{13}{24}-ஐக் கழிக்கவும்.