f-க்காகத் தீர்க்கவும்
f=x\left(5x+1\right)
x\neq -\frac{1}{5}\text{ and }x\neq 0
x-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
x=\frac{\sqrt{20f+1}-1}{10}
x=\frac{-\sqrt{20f+1}-1}{10}\text{, }f\neq 0
x-க்காகத் தீர்க்கவும்
x=\frac{\sqrt{20f+1}-1}{10}
x=\frac{-\sqrt{20f+1}-1}{10}\text{, }f\neq 0\text{ and }f\geq -\frac{1}{20}
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\left(5x+1\right)\times 1x=f
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி f ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் f,1+5x-இன் சிறிய பொது பெருக்கியான f\left(5x+1\right)-ஆல் பெருக்கவும்.
\left(5x+1\right)x=f
5x+1-ஐ 1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
5x^{2}+x=f
5x+1-ஐ x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
f=5x^{2}+x
எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
f=5x^{2}+x\text{, }f\neq 0
மாறி f ஆனது 0-க்குச் சமமாக இருக்க முடியாது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}