x-க்காகத் தீர்க்கவும்
x=3
x=-1
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
0=2\left(x-1\right)^{2}-8
x-1 மற்றும் x-1-ஐப் பெருக்கவும், தீர்வு \left(x-1\right)^{2}.
0=2\left(x^{2}-2x+1\right)-8
\left(x-1\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a-b\right)^{2}=a^{2}-2ab+b^{2} பயன்படுத்தவும்.
0=2x^{2}-4x+2-8
2-ஐ x^{2}-2x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
0=2x^{2}-4x-6
2-இலிருந்து 8-ஐக் கழிக்கவும், தீர்வு -6.
2x^{2}-4x-6=0
எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
x^{2}-2x-3=0
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
a+b=-2 ab=1\left(-3\right)=-3
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை x^{2}+ax+bx-3-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
a=-3 b=1
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். அத்தகைய ஜோடியானது அமைப்புத் தீர்வு மட்டுமே.
\left(x^{2}-3x\right)+\left(x-3\right)
x^{2}-2x-3 என்பதை \left(x^{2}-3x\right)+\left(x-3\right) என மீண்டும் எழுதவும்.
x\left(x-3\right)+x-3
x^{2}-3x-இல் x ஐக் காரணிப்படுத்தவும்.
\left(x-3\right)\left(x+1\right)
பரவல் பண்பைப் பயன்படுத்தி x-3 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=3 x=-1
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-3=0 மற்றும் x+1=0-ஐத் தீர்க்கவும்.
0=2\left(x-1\right)^{2}-8
x-1 மற்றும் x-1-ஐப் பெருக்கவும், தீர்வு \left(x-1\right)^{2}.
0=2\left(x^{2}-2x+1\right)-8
\left(x-1\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a-b\right)^{2}=a^{2}-2ab+b^{2} பயன்படுத்தவும்.
0=2x^{2}-4x+2-8
2-ஐ x^{2}-2x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
0=2x^{2}-4x-6
2-இலிருந்து 8-ஐக் கழிக்கவும், தீர்வு -6.
2x^{2}-4x-6=0
எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 2, b-க்குப் பதிலாக -4 மற்றும் c-க்குப் பதிலாக -6-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
-4-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-6\right)}}{2\times 2}
2-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\times 2}
-6-ஐ -8 முறை பெருக்கவும்.
x=\frac{-\left(-4\right)±\sqrt{64}}{2\times 2}
48-க்கு 16-ஐக் கூட்டவும்.
x=\frac{-\left(-4\right)±8}{2\times 2}
64-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{4±8}{2\times 2}
-4-க்கு எதிரில் இருப்பது 4.
x=\frac{4±8}{4}
2-ஐ 2 முறை பெருக்கவும்.
x=\frac{12}{4}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{4±8}{4}-ஐத் தீர்க்கவும். 8-க்கு 4-ஐக் கூட்டவும்.
x=3
12-ஐ 4-ஆல் வகுக்கவும்.
x=-\frac{4}{4}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{4±8}{4}-ஐத் தீர்க்கவும். 4–இலிருந்து 8–ஐக் கழிக்கவும்.
x=-1
-4-ஐ 4-ஆல் வகுக்கவும்.
x=3 x=-1
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
0=2\left(x-1\right)^{2}-8
x-1 மற்றும் x-1-ஐப் பெருக்கவும், தீர்வு \left(x-1\right)^{2}.
0=2\left(x^{2}-2x+1\right)-8
\left(x-1\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a-b\right)^{2}=a^{2}-2ab+b^{2} பயன்படுத்தவும்.
0=2x^{2}-4x+2-8
2-ஐ x^{2}-2x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
0=2x^{2}-4x-6
2-இலிருந்து 8-ஐக் கழிக்கவும், தீர்வு -6.
2x^{2}-4x-6=0
எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
2x^{2}-4x=6
இரண்டு பக்கங்களிலும் 6-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
\frac{2x^{2}-4x}{2}=\frac{6}{2}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{6}{2}
2-ஆல் வகுத்தல் 2-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-2x=\frac{6}{2}
-4-ஐ 2-ஆல் வகுக்கவும்.
x^{2}-2x=3
6-ஐ 2-ஆல் வகுக்கவும்.
x^{2}-2x+1=3+1
-1-ஐப் பெற, x உறுப்பின் ஈவான -2-ஐ 2-ஆல் வகுக்கவும். பிறகு -1-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-2x+1=4
1-க்கு 3-ஐக் கூட்டவும்.
\left(x-1\right)^{2}=4
காரணி x^{2}-2x+1. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-1=2 x-1=-2
எளிமையாக்கவும்.
x=3 x=-1
சமன்பாட்டின் இரு பக்கங்களிலும் 1-ஐக் கூட்டவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}