x-க்காகத் தீர்க்கவும்
x=\frac{1}{2}=0.5
x=-\frac{1}{2}=-0.5
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
-4x^{2}=-1
இரு பக்கங்களில் இருந்தும் 1-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
x^{2}=\frac{-1}{-4}
இரு பக்கங்களையும் -4-ஆல் வகுக்கவும்.
x^{2}=\frac{1}{4}
தொகுதி எண் மற்றும் வகு எண் இரண்டிலிருந்தும் எதிர்மறைக் குறியீட்டை அகற்றுவதன் மூலம் பின்னம் \frac{-1}{-4}-ஐ \frac{1}{4}-ஆக எளிமையாக்கலாம்.
x=\frac{1}{2} x=-\frac{1}{2}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
-4x^{2}+1=0
x^{2} உறுப்புடன் ஆனால் x உறுப்பின்றி இதைப் போல இருக்கும் இருபடிச் சமன்பாடுகளைத் தரநிலையான வடிவத்தில் இட்டதும் அவற்றை \frac{-b±\sqrt{b^{2}-4ac}}{2a} இருபடிச் சூத்திரத்தைப் பயன்படுத்தி இன்னமும் தீர்க்க முடியும்: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-4\right)}}{2\left(-4\right)}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக -4, b-க்குப் பதிலாக 0 மற்றும் c-க்குப் பதிலாக 1-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{0±\sqrt{-4\left(-4\right)}}{2\left(-4\right)}
0-ஐ வர்க்கமாக்கவும்.
x=\frac{0±\sqrt{16}}{2\left(-4\right)}
-4-ஐ -4 முறை பெருக்கவும்.
x=\frac{0±4}{2\left(-4\right)}
16-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{0±4}{-8}
-4-ஐ 2 முறை பெருக்கவும்.
x=-\frac{1}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{0±4}{-8}-ஐத் தீர்க்கவும். 4-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{4}{-8}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=\frac{1}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{0±4}{-8}-ஐத் தீர்க்கவும். 4-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-4}{-8}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x=-\frac{1}{2} x=\frac{1}{2}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}