பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\left(-x\right)x-8.1\left(-x\right)=0
-x-ஐ x-8.1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\left(-x\right)x+8.1x=0
-8.1 மற்றும் -1-ஐப் பெருக்கவும், தீர்வு 8.1.
-x^{2}+8.1x=0
x மற்றும் x-ஐப் பெருக்கவும், தீர்வு x^{2}.
x\left(-x+8.1\right)=0
x-ஐக் காரணிப்படுத்தவும்.
x=0 x=\frac{81}{10}
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x=0 மற்றும் -x+8.1=0-ஐத் தீர்க்கவும்.
\left(-x\right)x-8.1\left(-x\right)=0
-x-ஐ x-8.1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\left(-x\right)x+8.1x=0
-8.1 மற்றும் -1-ஐப் பெருக்கவும், தீர்வு 8.1.
-x^{2}+8.1x=0
x மற்றும் x-ஐப் பெருக்கவும், தீர்வு x^{2}.
-x^{2}+\frac{81}{10}x=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\frac{81}{10}±\sqrt{\left(\frac{81}{10}\right)^{2}}}{2\left(-1\right)}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக -1, b-க்குப் பதிலாக \frac{81}{10} மற்றும் c-க்குப் பதிலாக 0-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\frac{81}{10}±\frac{81}{10}}{2\left(-1\right)}
\left(\frac{81}{10}\right)^{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-\frac{81}{10}±\frac{81}{10}}{-2}
-1-ஐ 2 முறை பெருக்கவும்.
x=\frac{0}{-2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-\frac{81}{10}±\frac{81}{10}}{-2}-ஐத் தீர்க்கவும். பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{81}{10} உடன் -\frac{81}{10}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=0
0-ஐ -2-ஆல் வகுக்கவும்.
x=-\frac{\frac{81}{5}}{-2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-\frac{81}{10}±\frac{81}{10}}{-2}-ஐத் தீர்க்கவும். பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கழிப்பதன் மூலம், -\frac{81}{10}-இலிருந்து \frac{81}{10}-ஐக் கழிக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{81}{10}
-\frac{81}{5}-ஐ -2-ஆல் வகுக்கவும்.
x=0 x=\frac{81}{10}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
\left(-x\right)x-8.1\left(-x\right)=0
-x-ஐ x-8.1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\left(-x\right)x+8.1x=0
-8.1 மற்றும் -1-ஐப் பெருக்கவும், தீர்வு 8.1.
-x^{2}+8.1x=0
x மற்றும் x-ஐப் பெருக்கவும், தீர்வு x^{2}.
-x^{2}+\frac{81}{10}x=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
\frac{-x^{2}+\frac{81}{10}x}{-1}=\frac{0}{-1}
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
x^{2}+\frac{\frac{81}{10}}{-1}x=\frac{0}{-1}
-1-ஆல் வகுத்தல் -1-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-\frac{81}{10}x=\frac{0}{-1}
\frac{81}{10}-ஐ -1-ஆல் வகுக்கவும்.
x^{2}-\frac{81}{10}x=0
0-ஐ -1-ஆல் வகுக்கவும்.
x^{2}-\frac{81}{10}x+\left(-\frac{81}{20}\right)^{2}=\left(-\frac{81}{20}\right)^{2}
-\frac{81}{20}-ஐப் பெற, x உறுப்பின் ஈவான -\frac{81}{10}-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{81}{20}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-\frac{81}{10}x+\frac{6561}{400}=\frac{6561}{400}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{81}{20}-ஐ வர்க்கமாக்கவும்.
\left(x-\frac{81}{20}\right)^{2}=\frac{6561}{400}
காரணி x^{2}-\frac{81}{10}x+\frac{6561}{400}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{81}{20}\right)^{2}}=\sqrt{\frac{6561}{400}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{81}{20}=\frac{81}{20} x-\frac{81}{20}=-\frac{81}{20}
எளிமையாக்கவும்.
x=\frac{81}{10} x=0
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{81}{20}-ஐக் கூட்டவும்.